Home
Class 12
MATHS
The function g, defined by g(x) = sinalp...

The function g, defined by g(x) `= sinalpha + cosalpha - 1, alpha = sin^(-1) sqrt({x})` , {.} denotes fractional part function is

Promotional Banner

Similar Questions

Explore conceptually related problems

The function 'g' defined by g(x)=sin(sin^(-1){sqrt(x)}+cos (sin^(-1){sqrt(x)})-1 where {x} denotes the functional part function is

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

The function 'g' defined by g(x)= sin(sin^(-1)sqrt({x}))+cos(sin^(-1)sqrt({x}))-1 (where {x} denotes the functional part function) is (1) an even function (2) a periodic function (3) an odd function (4) neither even nor odd

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.

Draw the graph of y =(1)/({x}) , where {*} denotes the fractional part function.