Home
Class 12
MATHS
" 28."sqrt(1+sin x)...

" 28."sqrt(1+sin x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_( x to 0) (( x)/( 8 sqrt( 1 - sin x) - 8 sqrt( 1 + sin x))) is equal to :

The value of (sqrt(1 + sin x )+sqrt(1 - sin x))/(sqrt(1 + sin x )-sqrt(1-sin x)) is equal to

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Prove that cot^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) = (x)/(2), x in (0, (pi)/(4))

Differentiate y with respect to x, where [y= tan^-1 { sqrt(1+sin x) + sqrt(1- sin x)} / {sqrt (1+ sin x) - sqrt(1- sin x)}]

Differentiate tan^(-1) ((sqrt(1 + sin x) + sqrt(1 - sin x))/(sqrt(1 + sin x) - sqrt(1 - sin x))) w.r.t.x .

(d)/(dx) [ 2 cot^(-1) ((sqrt(1+ sin x) + sqrt(1-sin x))/(sqrt(1+ sin x) - sqrt(1-sin x)))]=