Home
Class 12
MATHS
" 12.यदि "e^(x)+e^(y)=e^(x+y)" तो सिद्ध ...

" 12.यदि "e^(x)+e^(y)=e^(x+y)" तो सिद्ध कीजिए कि "(dy)/(dx)=-e^(y-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(y)=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0 .

If e^x+e^y = e^(x+y) , show that (dy)/(dx) = -e^(y-x)

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)+e^(y-x)=0

(dy)/(dx)=(x+e^x)/(y+e^y)

If e^x+e^y=e^(x+y),p rov e t h a t(dy)/(dx)+e^(y-x)=0

If e^(x) + e^(y) = e^(x + y) , then prove that (dy)/(dx) = (e^(x)(e^(y) - 1))/(e^(y)(e^(x) - 1)) or (dy)/(dx) + e^(y - x) = 0 .

If e^(x)+e^(y)=e^(x+y) , prove that : (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) .

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0