Home
Class 12
MATHS
If f(2x^2+y^2/8, 2x^2-y^2/8)=xy, then...

If `f(2x^2+y^2/8, 2x^2-y^2/8)=xy,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(2x + y/8 , 2x - y/8) = xy , then f(m,n)+f(n,m)=0

if (x^(2)+y^(2))/(x^(2)-y^(2))=(17)/(8) then find the value of x:y

Add (2x^2+5xy+2y^2), (3x^2-2xy+5y^2) and (-2x^2+8xy+3y^2)

Subtract the second polynomial form the first: 8x^2 +4y^2 -6y+8 , x^2 -5y^2 +2xy +3y -8

If f(x,y)=2x^(2)-xy+2y^(2) then find f_x at the point (1,2)

If f(x,y)=2x^(2)-xy+2y^(2) then find f_x at the point (1,2)

If A=4x^2+y^2-6xy B= 3y^2+12x^2+8xy then A-B=___________?

3x+2y=8 2x-3y=8

If 2x^(2)-3xy+y^(2)+x+2y-8=0 then (dy)/(dx) =