Home
Class 12
MATHS
यदि y=(logx)^((logx)^(logx))………….oo हो त...

यदि `y=(logx)^((logx)^(logx))………….oo` हो तो सिद्ध कीजिए कि
`(dy)/(dx)=(y^(2))/(xlogx[1-ylog(logx)])`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)+(y)/(xlogx)=(sin2x)/(logx)

∫ (1)/(x.logx.(2+logx))

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

x(dy)/(dx)=y(logy-logx+1)

If y=(logx)^((logx)^((logx)^(....oo))) prove that, xlogx(dy)/(dx)=(y^(2))/(1-y log(logx))

intdx/(x.logx. log(logx)) =

int(log(logx))/(x.logx)dx=

int(log(logx))/(x.logx)dx=