Home
Class 12
MATHS
Lim(h->0) (inta^(x+h) ln^2t dt - inta^x ...

`Lim_(h->0) (int_a^(x+h) ln^2t dt - int_a^x ln^2 tdt)/h` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

Lim_(hto0)(int_(a)^(x+h)ln^(2)tdt-int_a^(x)ln^(2)tdt)/(h) equals to :

lim_(x->0)1/x[int_y^a e^(sin^2t)dt-int_(x+y)^a e^(sin^2t)dt] is equal to

lim_(x->0)1/x[int_y^a e^(sin^2t)dt-int_(x+y)^a e^(sin^2t)dt] is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

int log (5+t) dt

lim_(x rarr 0) [int_(y)^(a) e^(sin^(2)t) dt - int_(x + y)^(a) e^(sin^(2)t) dt] div x is equal to :

lim_(x rarr 0) (int_(0)^(x) t tan(5t)dt)/(x^(3)) is equal to :