Home
Class 11
MATHS
2^(sin^(2)x)+2^(cos^(2)x) is...

`2^(sin^(2)x)+2^(cos^(2)x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

2^(sin^(2)x)+2^(cos^(2)x)=2backslash sqrt(2)

Does the equation 2^(sin^(2)x)+2^(cos^(2)x)=1.5(tan x+cot x) have any solutions?

int(sin 2x)/(sin^(2)x + 2 cos^(2)x) dx =

int_(0)^(pi//2)(1)/(a^(2).sin^(2)x+b^(2).cos^(2)x)dx is equal to

Evaluate int(sin2x(dx))/(a^(2)sin^(2)x+b^(2)cos^(2)x)

If determinant |[cos^(2)x,sin^(2)x,cos^(2)x],[sin^(2)x,cos^(2)x,sin^(2)x],[cos^(2)x,sin^(2)x,-cos^(2)x]| is expanded as a function of sin^(2)x ,then the absolute value of constant term in expansion of function is

int(sin x cos x)/(sqrt(a^(2)sin^(2)x+b^(2)cos^(2)x))dx sin x

Evaluate: int(sin2x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

Evaluate: int(sin2x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

int(sin2x)/(sin^(2)x+2cos^(2)x)dx=