Home
Class 9
MATHS
If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)...

If `x=(sqrt3-1)/(sqrt3+1)` and `y=(sqrt3+1)/(sqrt3-1)` then `x^2-xy+y^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2) is equal to

x = (sqrt3 + 1)/(sqrt3 - 1) and y = (sqrt3 - 1)/(sqrt3 + 1) . Then (x^2 + xy + y^2)/(x^2 -xy + y^2) is equal to :

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)

If x= (sqrt3 - sqrt2)/(sqrt3+sqrt2) and y = (sqrt3+sqrt2)/(sqrt3-sqrt2) then x^2 +xy +y^2 is a multiple of