Home
Class 12
MATHS
D(tan(tan^(-1)x))=...

`D(tan(tan^(-1)x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

D(tan^(-1)x+tan^(-1)((1)/(x)))=

Prove that tan(2tan^(-1)x)=2tan(tan^(-1)x+tan^(-1)x^(3))

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

The value of int_(1)^(e)((tan^(-1)x)/(x)+(log x)/(1+x^(2)))dx is tan e(b)tan^(-1)e tan^(-1)((1)/(e))(d) none of these

If (d)/(dx)(tan^(-1)x)^(2)=k tan^(-1)x*(1)/(1+x^(2)) , then the value of k is -

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

Prove that tan (2 tan^(-1) x ) = 2 tan (tan^(-1) x + tan^(-1) x^(3)) .

d/dx [tan (tan^(-1) (x/a) - tan^(-1) ((x-a)/(x+a)))] =

The solution of the differential equation (1+x^2)(dy)/(dx)+1+y^2=0, is a) tan^(-1)x-tan^(-1)y=tan^(-1)C b) tan^(-1)y-tan^(-1)x=tan^(-1)C c) tan^(-1)y+-tan^(-1)x=tan^(\ )C d) tan^(-1)y+tan^(-1)x=tan^(-1)C