Home
Class 12
MATHS
यदि x=t^(2), y=2t, तो (dy)/(dx)=...

यदि `x=t^(2), y=2t,` तो `(dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2),y=t^(3) find (dy)/(dx)

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=t^2,\ \ y=t^3 , then (dy)/(dx)

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=t^(2) and y=log t , find (dy)/(dx) .

If x^(2)+y^(2) = t +1//t and x^(4) +y^(4) = t^(2) + 1//t^(2) then (dy)/(dx) =______________

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to