Home
Class 12
MATHS
Using first principles, prove that d/(dx...

Using first principles, prove that `d/(dx) [1/(f(x))]=- (f'(x) )/((f(x))^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using first principles, prove that d/(dx){1/(f(x))}=-(f^(prime)(x))/({f(x)}^2)

Using the first principle,prove that (d)/(dx)((1)/(f(x)))=(-f'(x))/([f(x)]^(2))

Using the first principle, prove that d/(dx)(1-x^2)=-2x

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Using the first principle, prove that d/(dx)(1/(f(x)))=(-f^(prime)(x))/([f(x)]^2)

Differentiate using first principle cos(x^(2)+1)

Differentiate from first principles: 12. (x^2+1)/( x)

Differentiate from first principles: 8. x+ (1)/( x)

Differentiate from first principles: 10. (1)/( x^((3)/(2)) )

State whether it is true or false d/dx {(log_af(x))}=(1/(f'(x)))d/dx{f(x)}