Home
Class 12
MATHS
int(0)^((pi)/(2))(xdx)/(sinx+cosx)=(pi)/...

`int_(0)^((pi)/(2))(xdx)/(sinx+cosx)=(pi)/(2sqrt(2))log(sqrt(2)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that int_(0)^(pi//2) (x)/(sinx+cosx)dx=(pi)/(2sqrt(2))log (sqrt(2)+1) .

int_(0)^((pi)/(2))(xdx)/(1+cosx)

int_0^(pi/2) (sin^2xdx)/(sinx+cosx)

int_(0)^((pi)/(2))(dx)/(2cosx+4sinx)=(1)/(sqrt(5))log((3+sqrt(5))/(2))

int_(0)^( pi)(xdx)/(1+cos^(2)x)=(pi^(2))/(2sqrt(2))

int_(0)^(pi)(sqrt(2)xdx)/(sqrt(2)+sin x)

int_(0)^(pi//2)(sqrt(sinx)cosx)^(3)dx=?

The value of int_(0)^((pi)/(2)) ((sinx+cosx)^(2))/(sqrt(1+sin2x))dx is equal to -