Home
Class 12
MATHS
Simplify: cosA sin(B - C) + cos B sin ...

Simplify:
`cosA sin(B - C) + cos B sin (C - A) + cosC sin(A -B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the cosA.sinB(B-C) + cosB.sin(C-A) + cosC.sin(A-B) = 0

cos(A-D)sin(B-C)+cos(B-D)sin(C-A)+cos(C-D)sin(A-B)=0

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

Simplify: sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)

Simplify: 1 + (sin(A - B))/(cos A cosB) + (sin (B - C))/(cos B cos C) + (sin (C - A))/(cos C cos A)

if A + B + C = pi then (cos A) / (sin B sin C) + (cos B) / (sin C sin A) + (cos C) / (sin A sin B) =

Simplify: (sin(A - B))/(sin A sin B) + (sin(B - C))/(sin B sin C) + (sin (C - A))/(sin C sin A)

(sin(A - B))/(cos A cos B) + (sin (B - C))/( cos B cos C) + (sin(C - A))/(cos C cos A) is

If A,B,C,D are four angles then sin (A-B) cos (A+B) + sin B (B-C) .cos (B+C) + sin (C-D) cos (C+D)+ sin (D-A) cos (D+A)=