Home
Class 12
MATHS
Let f(theta)=(1)/(tan^9 theta){(1+tanthe...

Let `f(theta)=(1)/(tan^9 theta){(1+tantheta)^10+(2+tantheta)^10+....+(20+tantheta)^10}-20tan theta` The left hand limit of `f(theta)" as "theta to (pi)/(2)`,is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(theta)=1/(tan^2theta){(1+tantheta)^3+(2+tantheta)^3+....+(10+tan theta)^3} - 10 tan theta Then, lim_(theta->pi/2)f(theta) is equal to

Let f(theta)=1/(tan^2theta){(1+tantheta)^3+(2+tantheta)^3+......+(10+tan theta)^3}-10 tan theta Then, lim_(theta->pi/2)f(theta) is equal to

tan3theta + tantheta = 2tan 2theta

Let f(theta)=(1)/(tan^(2)theta){(1+tan theta)^(3)+(2+tan theta)^(3)+......+(10+tan theta)^(3)}-10tan theta Then,lim_(theta rarr(pi)/(2))f(theta) is equal to

tantheta=? tan(90-theta)=?

tan 3theta = tan 2theta + tantheta

theta=tan^(-1)(2tan^(2)theta)-tan^(-1)(1/3tantheta) if

sin2 theta tantheta+1= sin 2theta + tantheta

theta=tan^-1(2tan^2theta)-tan^-1{(1/3)tantheta} , if

tantheta+tan2theta=tan3theta