Home
Class 11
MATHS
किसी त्रिभुज ABC के लिए , सिद्ध कीजिए...

किसी त्रिभुज ABC के लिए , सिद्ध कीजिए कि -
`sin (B-C)/(2)=(b-c)/(a)cos ""(A)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

सिद्ध कीजिए कि 2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

In a Delta ABC, prove that a ( cos B + cos C) = 2 (b + c) sin^(2)""(A)/(2)

In triangle ABC,a,b,c are the lengths of its sides and A,B,C are the angles of triangle ABC .The correct relation is given by (a) (b-c)sin((B-C)/(2))=a(cos A)/(2) (b) (b-c)cos((A)/(2))=as in(B-C)/(2)(c)(b+c)sin((B+C)/(2))=a(cos A)/(2)(d)(b-c)cos((A)/(2))=2a(sin(B+C))/(2)

In any triangle ABC, (a+b)^2 sin^2 ((C )/(2))+(a-b)^2 cos^2 ((C )/(2))= .

In Delta ABC , prove that (b - c)^(2) cos^(2) ((A)/(2)) + (b + c)^(2) sin^(2) ((A)/(2)) = a^(2) .

In any Delta ABC ,prove that (sin B)/(sin C)=(c-a cos B)/(b-a cos C)

In any Delta ABC, prove that: (sin B)/(sin C)=(c-a cos B)/(b-a cos C)

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)

If the sides a,b and C of o+ABC are in A.P.,prove that 2sin(A)/(2)sin(C)/(2)=sin(B)/(2)a cos^(2)(C)/(2)+cos^(2)(A)/(2)=(3b)/(2)