Home
Class 12
MATHS
int(0)^((pi)/(2))log(sinx)dx=int(0)^((pi...

`int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(sin2x)dx

int_(0)^((pi)/(2))log(tanx)dx

int_(0)^((pi)/(2))log(tanx)dx=0

int_(0)^((pi)/(2))log sin xdx=int_(0)^((pi)/(2))log cos xdx=(1)/(2)(pi)log((1)/(2))

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

int_(0)^((pi)/(2)) log (cotx)dx is :

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^(pi//2) log (cotx ) dx=