Home
Class 11
MATHS
If z,z1,z2inCC then (vii)|z1+z2|^2=|z1|^...

If `z,z_1,z_2inCC` then (vii)`|z_1+z_2|^2=|z_1|^2+|z_2|^2+2Re(z_1barz_2)` (viii)`|z_1-z_2|^2=|z_1|^2+|z_2|^2-2Re(z_1barz_2)` (ix)`|z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2)` (x) `|az_1-bz_2|^2+|bz_1+az_2|^2=(a^2+b^2)(|z_1|^2+|z_2|^2)` where `a,b in RR`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1, z_2 in C , then say which are true and false - . |z_1+z_2|^2=|z_1""|^2+|z_2|^2-2R e(z_1 z_2) |z_1-z_2|^2=|z_1""|^2-|z_2|^2-2R e(z_1 z_2) |z_1+z_2|^2+|z_1-z_2|^2=2(|z_1|^2+|z_2|^2) |a z_1-b z_2|^2+|b z_1+a z_2|^2=(a^2+b^2)(|z_1|^2+|z_2|^2) , where a ,b in Rdot

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

If z;z_(1);z_(2)varepsilon C then (vii) |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)+2Re(z_(1)bar(z)_(2))( viii) |z_(1)-z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2)-2Re(z_(1)bar(z)_(2))( ix) |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2)=2(|z_(1)|^(2)+|z_(2)|^(2))(x)|az_(1)-bz_(2)|^(2)+|bz_(1)+az_(2)|^(2)=(a^(2)+b^(2))(|z_(1)|^(2)+|z_(2)|^(2)) where a;b varepsilon R

Prove that |1-barz_1z_2|^2-|z_1-z_2|^2=(1-|z_1|^2)(1-|z_2|^2) .

If |z_1|=1,|z_2|=1 then prove that |z_1+z_2|^2+|z_1-z_2|^2 =4.

If z_1,z_2 in C , show that (z_1+ z_2)^2= z_1^2+2 z_1 z_2+ z_2^2 .

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

Prove that |z_1+z_2|^2 = |z_1|^2 + |z_2|^2 if z_1/z_2 is purely imaginary.

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣