Home
Class 12
MATHS
Period of the function f(x) =(1)/(3){sin...

Period of the function `f(x) =(1)/(3){sin 3x + |sin 3x | + [sin 3x]}` is (where [.] denotes the greatest integer function )

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The period of 3x - [3x] is (where [.] denote greatest integer function le x )

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Number of solutions of sin x=[x] where [.] denotes the greatest integer function is

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

Period of f(x) = sin 3x cos[3x]-cos 3x sin [3x] (where[] denotes the greatest integer function), is

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)