Home
Class 12
MATHS
If lim(x to a) (xsqrt(x) - a sqrt(a))/(...

If `lim_(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim_(x to 3) (x^(3) - 27)/(x - 3)`, find the value of a.

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

lim_(x rarr1)(sqrt(x)+3)

lim_(x rarr3)(x^(3)-27)/(x^(2)-9)

Evaluate lim_(xtoa) (sqrt(3x-a)-sqrt(x+a))/(x-a).

Evaluate lim_(xtoa) (sqrt(3x-a)-sqrt(x+a))/(x-a).

lim_(x->3)(x^(3)-27)/(x-3)