Home
Class 12
MATHS
If f(x)=(2011 + x)^(n), where x is a rea...

If `f(x)=(2011 + x)^(n)`, where x is a real variable and n is a positive interger, then value of `f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!)` is `-f(0)+f'(0)+ (f'' (0))/(2!)+...+ (f^((n-1))(0))/((n-1)!)` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= (1 + x)^n then the value of f(0) + f'(0) + (f''(0))/(2!) + .... + (f^n(0))/(n!) is

If f(x)=(1-x)^(n) , then the value of f(0)+f'(0)+(f''(0))/(2!)+...+(f^(n)(0))/(n!) , is

If f(x)=(a-x^(n))^(1//n) , where a gt 0 and n is a positive integer, then f[f(x)]=

If f(x)=(a-x^n)^(1/n)," where "a gt0 and n is a positive integer, show that f[f(x)]=x.

If f(x) = (1 - x)^n then the value of f(0) + f'(0) + (f^('')(0))/(2!) + ….+ (f^('')(0))/(n!) is equal to

If f(x) = (p - x^n)^(1/n), p gt 0 and n is positive integer, then the value of f[f(x)]

If f(x)=(1+x)^(n), then the value of f(0)+f'(0)+(f^(n)(0))/(2!)+(f'''(0))/(3!)+......(f^(n)(0))/(n!)