Home
Class 12
MATHS
The value of the integral int(0)^(pi) (x...

The value of the integral `int_(0)^(pi) (xdx)/(1+cos alpha sinx), 0 lt alpha lt pi`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)( x dx)/(1+cos alpha sin x)[0 lt alpha lt pi]

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

The value of the integral int_(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltalpha lt pi is

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

Evaluate int_(0)^(pi)(x dx)/(1+cos alpha sin x) ,where 0lt alpha lt pi .

The value of the integral int_(0)^(1)(dx)/(x^(2)+2xcosalpha+1) , where 0 lt alpha lt (pi)/(2) , is equal to :

int_(0)^( pi)(xdx)/(1+cos alpha*sin alpha)(0