Home
Class 12
MATHS
sincot^- 1costan^(- 1)2=...

`sincot^- 1costan^(- 1)2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression 1/(sqrt(2)){(sincot^(- 1)costan^(- 1)t)/(costan^(- 1)sincot^(- 1)sqrt(2)t)}*{sqrt((1+2t^2)/(2+t^2))} can take the value

sincot^-1 costan^-1 2 =

Simplify sincot^(-1)tancos^(-1)x

f(x)=sin{cot^-1(x+1)}-cos(tan^-1x) a=costan^-1sincot^-1x b=cos(2cos^-1x+sin^-1x) Answer the following question on above passage: The value of x for which f(x)=0 is

Simplify sincot^(-1)tancos^(-1)x , x >0

Simplify sincot^(-1)tancos^(-1)x , x >0

Simplify sincot^(-1)tancos^(-1)x , x >0

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If a^(2)=26//51," then "b^(2)=

f(x)=sin{cot^(-1)(x+1)}-cos(tan^(-1)x), a=costan^(-1)sincot^(-1)x, b=cos(2cos^(-1)x+sin^(-1)x) If f(x)=0 then a^(2)=

If sin(cot^(-1)(x+1))=costan^(-1)x , then x=