Home
Class 12
MATHS
tan^(-1).(x(x+1)+1)/((x+1)-x) =tan^(-...

`tan^(-1).(x(x+1)+1)/((x+1)-x)`
`=tan^(-1) (x^(2) +x^+1)`
= R.H.S

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)x+tan^(-1) (1-x) = 2 tan ^(-1) sqrt(x(1-x))

Let x_(1) , x_(2) , x_(3) be the solution of tan^(-1) ((2x + 1)/(x +1 )) + tan ^(-1) ((2x - 1)/( x -1 )) = 2 tan ^(-1) ( x + 1) " where x_1 2x_(1) + x_(2) + x_(3)^(2) is equal to

tan ^ (- 1) ((x + 1) / (x-1)) + tan ^ (- 1) ((x-1) / (x)) = tan ^ (- 1) (- 7)

For all n in N, x in R, tan^(-1) [ ( x)/( 1.2+ x^2) ] + tan^(-1) [ (x)/( 2.3+ x^2) ] + …. + tan^(-1) [ ( x)/( n(n+1) +x^2) ] =

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

tan^(- 1)(x+2/x)-tan^(- 1)(4/x)=tan^(- 1)(x-2/x)

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

tan^-1 (x-1)/(x-2) + tan^-1 (x+1)/(x+2)=pi/4. find X