Home
Class 12
MATHS
If y = sqrt(x) + (1)/(sqrt(x)) prove t...

If `y = sqrt(x) + (1)/(sqrt(x))` prove that `2x(dy)/(dx) + y = 2sqrt(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y= sqrt ( x) + (1)/( sqrtx ) , prove that 2x (dy)/( dx ) + y=2 sqrt (x ) .

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x/a)+sqrt(a/x) , prove that 2x y(dy)/(dx)=(x/a-a/x)

If y=sqrt(x+1)+sqrt(x-1) , prove that sqrt(x^2-1)(dy)/(dx)=1/2y .

If y=sqrt(x)+(1)/(x), Show that 2x(dy)/(dx)+y=2sqrt(x)