Home
Class 12
MATHS
If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sq...

If `sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0,` then the value of `2sec^(-1)(x/2) + sin^(-1)(x/2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1sqrt((x^2+2x+1))+sec^-1sqrt((x^2+2x+1))=pi/2 , x ne 0 , then the value of 2sec^-1(x/2)+sin^-1(x/2) is equal to

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2

If "Sec"^(-1)1/(sqrt(1-x^(2)))+"Cot"^(-1)(sqrt(1-x^(2)))/x=Sin^(-1)k , then the value of k is

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi

If f(x) = 2 sin^(-1) sqrt(1-x) + sin^(-1)(2 sqrt(x (1-x))) where x in (0, 1/2) , then f'(x) has the value equal to (i) 2/(xsqrt(1-x)) (ii) 0 (iii) -2/(xsqrt(1-x)) (iv) pi