Home
Class 12
MATHS
int(e^(5log(e)x)-e^(4log(e)x))/(e^(3log(...

int(e^(5log_(e)x)-e^(4log_(e)x))/(e^(3log_(e)x)-e^(2log_(e)x))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(e^(5log_(e)x)+e^(4log_(e)x))/(e^(3log_(e)x)+e^(2log_(e)x))dx is

int(e^(6log_(e)x)-e^(5log_(e)x))/(e^(4log_(e)xe^(3log_(e)x))) backslash dx

Evaluate: int(e^(5)(log)_(e)x-e^(4)(log)_(e)x)/(e^(3)(log)_(e)x-e^(2)(log)_(e^(x))x)dx

Evaluate: int(e^(5(log)_(e)x)-e^(4(log)_(e)x))/(e^(3(log)_(e)x-e^(2log x)))dx

Evaluate: int(e^(5(log)_e x)-e^(4(log)_ex))/(e^(3(log)_e x)-e^(2logx))dx

I=int(log_(e)(log_(e)x))/(x(log_(e)x))dx

The value of int (e^(6 log x) - e^(5 log x))/(e^(4 log x) - e^(3 log x))dx is equal to

int(e^(log_(e)x))/(x)dx