Home
Class 12
MATHS
If sin^-1x +sin^-1(1-x)=sin^-1sqrt[1-x^2...

If `sin^-1x` +`sin^-1(1-x)`=`sin^-1sqrt[1-x^2]`,then x is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)(1-x)=sin^(-1)sqrt(1-x^(2)), then x is equal to

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

int(sin^(-1)x)/(sqrt(1-x^(2)))dx is equal to

If y=sin^(-1)x+sin^(-1)sqrt(1-x^(2)) , what is (dy)/(dx) equal to?

intdx/(sqrt(1-x^2)(sin^-1x)^2) is equal to

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

If y=sin^(-1)x+sin^(-1).sqrt(1-x^(2)) what is (dy)/(dx) equal to ?

Solve: sin^-1 (x)+ sin (sqrt(1-x^2))=

" (2) "sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)" is equal to "

If y = sin^(2) cot^(-1) sqrt((1+x)/(1-x)) , then (dy)/(dx) is equal to a)2 sin 2x b)sin 2x c) (1)/(2) d) -(1)/(2)