Home
Class 12
MATHS
Suppose a,b,c and x real numbers. Let ...

Suppose a,b,c and x real numbers. Let
`Delta=|(1+a,1+ax,1+ax^(2)),(1+b,1+bx,1+bx^(2)),(1+c,1+cx,1+cx^(2))|`
Then `Delta` is independent of

A

a,b,c

B

x

C

a,b,c,x

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} 1 + a & 1 + ax & 1 + ax^2 \\ 1 + b & 1 + bx & 1 + bx^2 \\ 1 + c & 1 + cx & 1 + cx^2 \end{vmatrix} \] ### Step 1: Split the first column We can split the first column into two parts: \[ \Delta = \begin{vmatrix} 1 & 1 + ax & 1 + ax^2 \\ 1 & 1 + bx & 1 + bx^2 \\ 1 & 1 + cx & 1 + cx^2 \end{vmatrix} + \begin{vmatrix} a & 1 + ax & 1 + ax^2 \\ b & 1 + bx & 1 + bx^2 \\ c & 1 + cx & 1 + cx^2 \end{vmatrix} \] ### Step 2: Apply column operations Now, we can perform column operations to simplify the determinant. We will replace the second and third columns by subtracting the first column from them: \[ \Delta = \begin{vmatrix} 1 & ax & ax^2 \\ 1 & bx & bx^2 \\ 1 & cx & cx^2 \end{vmatrix} + \begin{vmatrix} a & 1 + ax & 1 + ax^2 \\ b & 1 + bx & 1 + bx^2 \\ c & 1 + cx & 1 + cx^2 \end{vmatrix} \] ### Step 3: Further simplify Now, we can replace the second column with the second column minus \(x\) times the first column and the third column with the third column minus \(x^2\) times the first column: \[ \Delta = \begin{vmatrix} 1 & ax & ax^2 \\ 1 & bx & bx^2 \\ 1 & cx & cx^2 \end{vmatrix} \] This results in: \[ \Delta = \begin{vmatrix} 1 & ax & ax^2 \\ 1 & bx & bx^2 \\ 1 & cx & cx^2 \end{vmatrix} \] ### Step 4: Identify linear dependence Notice that the first column is the same for all rows. Therefore, the rows are linearly dependent, which implies that the determinant is zero: \[ \Delta = 0 \] ### Conclusion Thus, we conclude that the value of \(\Delta\) is independent of \(a\), \(b\), \(c\), and \(x\). The determinant is always zero.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Suppose a,b,c,x,y epsilon R . Let Delta=|(1,2+ax,3+ay),(1,2+bx,3+by),(1,2+cx,3+cy)| Then Delta is independnet is

Suppose a,b, c epsilon R on abc!=0 . Let Delta=|(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)| If Delta=0 , then 1/a+1/b+1/c is equal to

If f(x)=|(1+a,1+ax,1+ax^2), (1+b, 1+bx, 1+bx^2), (1+c, 1+cx, 1+cx^2)|, where a, b, c are non-zero constants, then value of f(10) is

Given that a,b,c are distinct real numbers such that expressions ax^(2)+bx+c,bx^(2)+cx+aandcx^(2)+ax+b are always non-negative.Prove that the quantity (a^(2)+b^(2)+c^(2))/(ab+bc+ca) can never lie inn (-oo,1)uu[4,oo)

If lim_(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2 , then (a, b, c) is

Let a, b and c be fixed positive real numbers. Let f (x)=(ax)/(b+cx) for x le 1 . Then as x increases,

If a,b,c are distinct real numbers and the system of equations ax+a^(2)y+(a^(3)+1)z=0bx+b^(2)y+(b^(3)+1)z=0cx+c^(2)y+(c^(3)+1)=0 has a non-trivial solution,show that abc=-1

If (1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) then C+D

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)...

    Text Solution

    |

  2. Suppose a,b and c are distinct real numbers. Let Delta=|(a,a+c,a-b),...

    Text Solution

    |

  3. Suppose a,b,c and x real numbers. Let Delta=|(1+a,1+ax,1+ax^(2)),(1+...

    Text Solution

    |

  4. Suppose a,b,c,gt 1 and f(x)=|(a^(-x),a^(x),x),(b^(-3x),b^(3x),3x^(3)...

    Text Solution

    |

  5. Suppose n,m are natural numbers and f(x)=|(1,(1+x)^(m),(1+mx)^(mn)),...

    Text Solution

    |

  6. Suppose a,b,c are sides of a scalene triangle. Let Delta=|(a,b,c),(b...

    Text Solution

    |

  7. If A,B and C are angle of a triangle of a triangle ,the value of |{:(...

    Text Solution

    |

  8. Show that if x(1),x(2),x(3) ne 0 |{:(x(1) +a(1)b(1),,a(1)b(2),,a(1)b...

    Text Solution

    |

  9. Let plamda^(4)+qlamda^(3)+rlamda^(2)+slamda+t =|(lamda^(2)+3lamda,la...

    Text Solution

    |

  10. Let Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2))| Solution set of Delta=0 is

    Text Solution

    |

  11. Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=...

    Text Solution

    |

  12. Suppose a,b,c,gt0 and a,b,c are the pth, qth, rth terms of a G.P. Let ...

    Text Solution

    |

  13. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  14. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  15. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  16. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  17. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  18. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  19. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  20. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |