Home
Class 12
MATHS
Let Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2...

Let `Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2))|` Solution set of `Delta=0` is

A

`{-2,-3}`

B

`{-3,4}`

C

`{4,-6}`

D

`{-2,-1}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 1 & -4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 & 5x^2 \end{vmatrix} \) and find the solution set for \( \Delta = 0 \), we will follow these steps: ### Step 1: Calculate the Determinant We can calculate the determinant using the formula for a 3x3 matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant: \[ \Delta = 1 \begin{vmatrix} -2 & 5 \\ 2 & 5x^2 \end{vmatrix} - (-4) \begin{vmatrix} 1 & 5 \\ 1 & 5x^2 \end{vmatrix} + 20 \begin{vmatrix} 1 & -2 \\ 1 & 2 \end{vmatrix} \] ### Step 2: Calculate Each Minor 1. Calculate \( \begin{vmatrix} -2 & 5 \\ 2 & 5x^2 \end{vmatrix} \): \[ = (-2)(5x^2) - (5)(2) = -10x^2 - 10 \] 2. Calculate \( \begin{vmatrix} 1 & 5 \\ 1 & 5x^2 \end{vmatrix} \): \[ = (1)(5x^2) - (5)(1) = 5x^2 - 5 \] 3. Calculate \( \begin{vmatrix} 1 & -2 \\ 1 & 2 \end{vmatrix} \): \[ = (1)(2) - (-2)(1) = 2 + 2 = 4 \] ### Step 3: Substitute Back into the Determinant Formula Now substitute these values back into the determinant expression: \[ \Delta = 1(-10x^2 - 10) + 4(5x^2 - 5) + 20(4) \] ### Step 4: Simplify the Expression \[ \Delta = -10x^2 - 10 + 20x^2 - 20 + 80 \] \[ = (20x^2 - 10x^2) + (-10 - 20 + 80) \] \[ = 10x^2 + 50 \] ### Step 5: Set the Determinant Equal to Zero Now, we set \( \Delta = 0 \): \[ 10x^2 + 50 = 0 \] ### Step 6: Solve for \( x^2 \) \[ 10x^2 = -50 \] \[ x^2 = -5 \] ### Step 7: Analyze the Solution Since \( x^2 = -5 \) has no real solutions (as the square of a real number cannot be negative), we conclude that there are no real values of \( x \) that satisfy the equation. ### Final Answer The solution set of \( \Delta = 0 \) is that there are no real values of \( x \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

The solution set of the equation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|=0 is

Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}| ,then

The roots of the equation |(1,4,20),(1,-2,5),(1,2x,5x^(2))| = 0 are

Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(1,x^(2),1)| the numerical value of Delta is

Delta=|[5,3,8],[2,0,1],[1,2,3]|=

Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Show that if x(1),x(2),x(3) ne 0 |{:(x(1) +a(1)b(1),,a(1)b(2),,a(1)b...

    Text Solution

    |

  2. Let plamda^(4)+qlamda^(3)+rlamda^(2)+slamda+t =|(lamda^(2)+3lamda,la...

    Text Solution

    |

  3. Let Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2))| Solution set of Delta=0 is

    Text Solution

    |

  4. Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=...

    Text Solution

    |

  5. Suppose a,b,c,gt0 and a,b,c are the pth, qth, rth terms of a G.P. Let ...

    Text Solution

    |

  6. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  7. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  8. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  9. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  10. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  11. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  12. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  13. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  14. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  15. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  16. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  17. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  18. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  19. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  20. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |