Home
Class 12
MATHS
Suppose a,b,c,gt0 and a,b,c are the pth,...

Suppose `a,b,c,gt0` and a,b,c are the pth, qth, rth terms of a G.P. Let
`Delta=|(1,p,loga),(1,q,logb),(1,r,logc)|`
the numerical value of `Delta` is

A

`-1`

B

`2`

C

`0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} 1 & p & \log a \\ 1 & q & \log b \\ 1 & r & \log c \end{vmatrix} \] ### Step 1: Set up the determinant We start with the determinant as defined: \[ \Delta = \begin{vmatrix} 1 & p & \log a \\ 1 & q & \log b \\ 1 & r & \log c \end{vmatrix} \] ### Step 2: Apply row operations We can simplify the determinant by performing row operations. We will replace the second and third rows by subtracting the first row from them: \[ R_2 \leftarrow R_2 - R_1 \quad \text{and} \quad R_3 \leftarrow R_3 - R_1 \] This gives us: \[ \Delta = \begin{vmatrix} 1 & p & \log a \\ 0 & q-p & \log b - \log a \\ 0 & r-p & \log c - \log a \end{vmatrix} \] ### Step 3: Factor out the first column Since the first column has a common factor of 1, we can factor it out: \[ \Delta = 1 \cdot \begin{vmatrix} q-p & \log b - \log a \\ r-p & \log c - \log a \end{vmatrix} \] ### Step 4: Calculate the 2x2 determinant Now we calculate the 2x2 determinant: \[ \Delta = (q-p)(\log c - \log a) - (r-p)(\log b - \log a) \] ### Step 5: Simplify using properties of logarithms Using the properties of logarithms, we can rewrite the logarithmic differences: \[ \Delta = (q-p) \log \left(\frac{c}{a}\right) - (r-p) \log \left(\frac{b}{a}\right) \] ### Step 6: Factor out common terms We can factor out the common term \( \log \left(\frac{1}{a}\right) \): \[ \Delta = \log \left(\frac{c^{q-p}}{b^{r-p}}\right) \] ### Step 7: Final simplification Using the property of logarithms, we can express the final result as: \[ \Delta = \log \left(\frac{c^{q-p}}{b^{r-p}}\right) = 0 \] This implies that the numerical value of \( \Delta \) is: \[ \Delta = 0 \] ### Final Answer: The numerical value of \( \Delta \) is \( 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Suppose a, b, c gt 0 and are respectively the pth, qth and rth terms of a G.P. Let x=(loga)i+(logb)j+(logc)k y=(q-r)i+(r-p)j+(p-q)k If angle between x and y is kpi , then k = ______

If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., then Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}| equals

If a,b, and c are respectively,the pth,qth, and rth terms of a G.P.,show that (q-r)log a+(r-p)log b+(p-q)log c=0

If p,q, and r are inA.P.show that the pth qth,and rth terms of any G.P.are in G.P.

If a,b,are positive and are the pth, qthrth terms respectively of a GP then det[[log a,p,1log b,q,1log c,r,1]]=

If a , b , c are all positive and are p t h ,q t ha n dr t h terms of a G.P., then that =|loga p1logb q1logc r1|=0

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Let Delta=|(1,-4,20),(1,-2,5),(1,2,5x^(2))| Solution set of Delta=0 is

    Text Solution

    |

  2. Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=...

    Text Solution

    |

  3. Suppose a,b,c,gt0 and a,b,c are the pth, qth, rth terms of a G.P. Let ...

    Text Solution

    |

  4. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  5. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  6. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  7. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  8. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  9. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  10. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  11. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  12. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  13. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  14. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  15. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  16. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  17. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  18. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  19. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  20. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |