Home
Class 12
MATHS
Let omega = - (1)/(2) + i (sqrt3)/(2), t...

Let `omega = - (1)/(2) + i (sqrt3)/(2)`, then the value of the determinant `|(1,1,1),(1,-1- omega^(2),omega^(2)),(1,omega^(2),omega^(4))|`, is

A

`3omega`

B

`3omega(omega-1)`

C

`3omega^(2)`

D

`3omega(1-omega)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

(1-omega+omega^(2))(1+omega-omega^(2))=4

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

The value of det[[1,1,11,omega,omega^(2)1,omega^(2),omega]]

det [[1, omega, omega^(2) omega, omega^(2), 1omega^(2), 1, omega]]

If omega is cube root of unit, then find the value of determinant |(1,omega^3,omega^2), (omega^3,1,omega), (omega^2,omega,1)|.

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Prove that |{:(1, a, a^(2)-bc),(1, b, b^(2)-ca), (1, c, c^(2)-ab):}|=...

    Text Solution

    |

  2. Suppose a,b,c,gt0 and a,b,c are the pth, qth, rth terms of a G.P. Let ...

    Text Solution

    |

  3. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  4. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  5. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  6. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  7. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  8. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  9. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  10. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  11. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  12. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  13. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  14. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  15. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  16. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  17. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  18. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  19. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  20. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |