Home
Class 12
MATHS
If a,b,c be respectively the p^(th),q^(t...

If a,b,c be respectively the `p^(th),q^(th)andr^(th)` terms of a H.P., then
`Delta=|{:(bc,ca,ab),(p,q,r),(1,1,1):}|` equals

A

0

B

`-1`

C

1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If a b c are the p^(th),q^(th) and r^(th) terms of an AP then prove that sum a(q-r)=0

If a,b,c are respectively the p^(th),q^(th) and r^(th) terms of a G.P.show that (q-r)log a+(r-p)log b+(p-q)log c=0

If a,b,c are the p^(th),q^(th),r^(th) terms in H.P.then det[[ca,q,1ab,r,1]]=

l, m,n are the p^(th), q ^(th) and r ^(th) term of a G.P. all positive, then |{:(logl, p, 1),(log m, q, 1),(log n ,r,1):}| equals :

If a,b,c are respectively the p^(th), q^(th) and r^(th) terms of the given G.P. then show that (q - r) log a + (r - p) log + (p - q) log c = 0, where a, b, c gt 0

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respectively of a G.P show that, |{:(,log a,p,1),(,log b,q,1),(,log c,r,1):}|=0

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Suppose a,b,c,gt0 and a,b,c are the pth, qth, rth terms of a G.P. Let ...

    Text Solution

    |

  2. Let omega = - (1)/(2) + i (sqrt3)/(2), then the value of the determina...

    Text Solution

    |

  3. If a,b,c be respectively the p^(th),q^(th)andr^(th) terms of a H.P., ...

    Text Solution

    |

  4. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  5. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  6. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  7. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  8. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  9. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  10. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  11. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  12. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  13. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  14. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  15. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  16. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  17. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  18. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  19. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  20. If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(...

    Text Solution

    |