Home
Class 12
MATHS
If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2...

If `x=-2` and `Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)|` then numerical value of `Delta` is

A

8

B

`-8`

C

`4`

D

`-4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of \(\Delta\) given that \(x = -2\) and \[ \Delta = \begin{vmatrix} x+y & x & x \\ 5x + 4y & 4x & 2x \\ 10x + 8y & 8x & 3x \end{vmatrix} \] we will simplify the determinant using row operations and then substitute the value of \(x\). ### Step 1: Substitute \(x = -2\) First, we substitute \(x = -2\) into the determinant: \[ \Delta = \begin{vmatrix} -2 + y & -2 & -2 \\ 5(-2) + 4y & 4(-2) & 2(-2) \\ 10(-2) + 8y & 8(-2) & 3(-2) \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} -2 + y & -2 & -2 \\ -10 + 4y & -8 & -4 \\ -20 + 8y & -16 & -6 \end{vmatrix} \] ### Step 2: Apply Row Operations Next, we will perform row operations to simplify the determinant. We can replace row 2 with \(R_2 - 2R_1\) and row 3 with \(R_3 - 3R_1\): - For \(R_2\): \[ R_2 = (-10 + 4y) - 2(-2 + y) = -10 + 4y + 4 - 2y = -6 + 2y \] So, the new row 2 becomes: \[ (-6 + 2y, -8 + 4, -4 + 4) = (-6 + 2y, -4, 0) \] - For \(R_3\): \[ R_3 = (-20 + 8y) - 3(-2 + y) = -20 + 8y + 6 - 3y = -14 + 5y \] So, the new row 3 becomes: \[ (-14 + 5y, -16 + 6, -6 + 6) = (-14 + 5y, -10, 0) \] Now, the determinant looks like: \[ \Delta = \begin{vmatrix} -2 + y & -2 & -2 \\ -6 + 2y & -4 & 0 \\ -14 + 5y & -10 & 0 \end{vmatrix} \] ### Step 3: Calculate the Determinant Since the last column has two zeros, we can expand the determinant along the last column: \[ \Delta = (-2) \begin{vmatrix} -6 + 2y & -4 \\ -14 + 5y & -10 \end{vmatrix} \] Calculating the 2x2 determinant: \[ \Delta = -2 \left[ (-6 + 2y)(-10) - (-4)(-14 + 5y) \right] \] Calculating the terms: \[ = -2 \left[ 60 - 20y - 56 + 20y \right] \] \[ = -2 \left[ 4 \right] = -8 \] ### Step 4: Conclusion Thus, the numerical value of \(\Delta\) is: \[ \Delta = -8 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Q.det[[x+y,x,x15x+4y,4x,2x10x+8y,8x,3x]]=x^(3)

Prove that: |x+y xx5x+4y4x2x10x+8y8x3x|=x^(3)

If x,y,z in R & Delta =|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 then the value of x is

If x,y and zinR , and Delta=|(x,x+y,x+y+z),(2x,5x+2y,7x+5y+2z),(3x,7x+3y,9x+7y+3z)|=-16 , then find value of x.

If y=2x^(3)-2x^(2)+3x-5, then for x=2 and Delta x=0.1 value of Delta y is

If 8x + 5y = 9, 3x + 2y = 4, then the value of x and y are

Delta=det[[x,1,0x^(2),2x+y,10,x+y,2x+3y]] is not divisible

If 8x^2 + y^2 -12x -4xy+9 =0 , then the value of (14x-5y) is:

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If 1,omega , omega^2 are the cube roots of unity , then Delta=|(1,ome...

    Text Solution

    |

  2. Using properties of determinants, prove that |b+c q+r y+z c+a r+p ...

    Text Solution

    |

  3. If x=-2 and Delta=|(x+y,x,x),(5x+4y,4x,2x),(10x+8y,8x,3x)| then numeri...

    Text Solution

    |

  4. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  5. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  6. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  7. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  8. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  9. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  10. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  11. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  12. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  13. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  14. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  15. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  16. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  17. If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(...

    Text Solution

    |

  18. If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,si...

    Text Solution

    |

  19. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  20. Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(...

    Text Solution

    |