Home
Class 12
MATHS
Let omega!=1 be a cube root of unit and ...

Let `omega!=1` be a cube root of unit and
`Delta=|(1-omega-omega^(2),2,2),(2omega, omega-omega^(2)-1,2omega),(2omega^(2),2omega^(2),omega^(2)-1-omega)|`
then `Delta` equals

A

`-omega`

B

`3omega(1-omega)`

C

`0`

D

`1-omega^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \Delta \) given by the determinant \[ \Delta = \begin{vmatrix} 1 - \omega - \omega^2 & 2 & 2 \\ 2\omega & \omega - \omega^2 - 1 & 2\omega \\ 2\omega^2 & 2\omega^2 & \omega^2 - 1 - \omega \end{vmatrix} \] where \( \omega \) is a cube root of unity (i.e., \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \)), we can simplify the determinant using row operations. ### Step 1: Simplify the first row We can replace the first row \( R_1 \) with \( R_1 + R_2 + R_3 \): \[ R_1 = (1 - \omega - \omega^2) + (2\omega) + (2\omega^2) \] Calculating this: - The first element: \[ 1 - \omega - \omega^2 + 2\omega + 2\omega^2 = 1 + \omega + \omega^2 = 1 + 0 = 1 \] - The second element: \[ 2 + (\omega - \omega^2 - 1) + 2\omega^2 = 2 + \omega - \omega^2 - 1 + 2\omega^2 = 1 + \omega + \omega^2 = 1 + 0 = 1 \] - The third element: \[ 2 + (\omega^2 - 1 - \omega) = 2 + \omega^2 - 1 - \omega = 1 + \omega^2 - \omega \] Thus, the new first row becomes: \[ R_1 = (1, 1, 1 + \omega^2 - \omega) \] ### Step 2: Rewrite the determinant Now, the determinant becomes: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 + \omega^2 - \omega \\ 2\omega & \omega - \omega^2 - 1 & 2\omega \\ 2\omega^2 & 2\omega^2 & \omega^2 - 1 - \omega \end{vmatrix} \] ### Step 3: Identify a row of zeros Next, we can see that \( 1 + \omega + \omega^2 = 0 \) implies \( \omega^2 = -1 - \omega \). Therefore, we can simplify the third row: \[ \omega^2 - 1 - \omega = -1 - \omega - 1 - \omega = -2 - 2\omega \] Thus, the third row can be simplified to: \[ R_3 = (2\omega^2, 2\omega^2, -2 - 2\omega) \] ### Step 4: Calculate the determinant Now, notice that if we replace \( R_3 \) with \( R_3 + 2R_1 \), we will have a row of zeros: \[ R_3 = (2\omega^2 + 2, 2\omega^2 + 2, -2 - 2\omega + 2(1 + \omega^2 - \omega)) \] This will lead to a row of zeros, making the determinant equal to zero: \[ \Delta = 0 \] ### Final Answer Thus, the value of \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1),(omega,omega^(2),1+x),(1,x+omega,omega^(2))|=0 then value of x is

If omega is a cube root of unity, then for polynomila is |(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega be an imaginary cube root of unity,show that (1+omega-omega^(2))(1-omega+omega^(2))=4

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If a=omega!=1, is a cube root of unity b=785,c=2008i and Delta=|(a,a...

    Text Solution

    |

  2. for x,x,z gt 0 Prove that |{:(1,,log(x)y,,log(x)z),(log(y)x,,1,,log(y)...

    Text Solution

    |

  3. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  4. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  5. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  6. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  7. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  8. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  9. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  10. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  11. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  12. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  13. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  14. If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(...

    Text Solution

    |

  15. If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,si...

    Text Solution

    |

  16. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  17. Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(...

    Text Solution

    |

  18. If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ...

    Text Solution

    |

  19. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  20. If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a...

    Text Solution

    |