Home
Class 12
MATHS
Let x="cos"(pi)/3+i "sin"(pi)/3 and De...

Let `x="cos"(pi)/3+i "sin"(pi)/3` and
`Delta=|(1,x,x^(2)),(x^(2),1,x),(1,x^(2),1)|`
the numerical value of `Delta` is

A

0

B

`-1`

C

`8`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the determinant \( \Delta \) given by: \[ \Delta = \begin{vmatrix} 1 & x & x^2 \\ x^2 & 1 & x \\ 1 & x^2 & 1 \end{vmatrix} \] where \( x = \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) \). ### Step 1: Calculate \( x \) First, we compute the value of \( x \): \[ x = \cos\left(\frac{\pi}{3}\right) + i \sin\left(\frac{\pi}{3}\right) \] Using the known values: \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2}, \quad \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ x = \frac{1}{2} + i \frac{\sqrt{3}}{2} \] ### Step 2: Compute \( x^2 \) Next, we compute \( x^2 \): \[ x^2 = \left(\frac{1}{2} + i \frac{\sqrt{3}}{2}\right)^2 = \left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)\left(i \frac{\sqrt{3}}{2}\right) + \left(i \frac{\sqrt{3}}{2}\right)^2 \] Calculating each term: \[ = \frac{1}{4} + i \frac{\sqrt{3}}{2} + \left(-\frac{3}{4}\right) = -\frac{1}{2} + i \frac{\sqrt{3}}{2} \] ### Step 3: Substitute \( x \) and \( x^2 \) into \( \Delta \) Now we substitute \( x \) and \( x^2 \) into the determinant: \[ \Delta = \begin{vmatrix} 1 & \frac{1}{2} + i \frac{\sqrt{3}}{2} & -\frac{1}{2} + i \frac{\sqrt{3}}{2} \\ -\frac{1}{2} + i \frac{\sqrt{3}}{2} & 1 & \frac{1}{2} + i \frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} + i \frac{\sqrt{3}}{2} & 1 \end{vmatrix} \] ### Step 4: Calculate the Determinant Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \Delta = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a = 1, b = x, c = x^2, d = x^2, e = 1, f = x, g = 1, h = x^2 \). Calculating the determinant step by step: 1. Compute \( ei - fh \) 2. Compute \( di - fg \) 3. Compute \( dh - eg \) After performing the calculations (as indicated in the video transcript), we find that: \[ \Delta = 4 \] ### Final Answer Thus, the numerical value of \( \Delta \) is: \[ \Delta = 4 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let Delta=|{:(,1,x,x^(2)),(,x^(2),1,x),(,x,x^(2),1):}| ,then

Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=|(1,x,x),(1,x+y,y),(1,x,x+y)| then Delta equals

Let Delta(x,y)=|(1,x,y),(1,x+y,y),(1,x,x+y)| Then Delta(-3,2) equals

Let Delta(x)=|(x^2-1,x+1,x-2),(2x^2-1,3x,3x-3),(x^2+4,2x-1,2x-1)|. Prove, by using calculus, that Delta(x) is a first degree polynomial.

Let phi_1(x)=x+a_2, phi_2(x)=x^2+b_1x+b_2, x_1=2,x_2=3 and x_3=5 and Delta=|(1,1,1),( phi_1(x_1), phi_1(x_2), phi_1(x_3)),(phi_2(x_1),phi_2(x_2),phi_2(x_3))| . Find the value of Delta .

Let Delta(x)=|(sinx, cosx, sin2x+cos2x),(0,1,1),(1,0,-1)| then Delta'(x) vanishes at least once in

If A(x)=det[[x^(n),sin x,cos xn!sin((n pi)/(2)),cos((n pi)/(2))a,a^(2),a^(3)]], then the value of (d^(n))/(dx^(n))[Delta(x)] at x=0 is

If sin ^(-1)((1 - x ^(2))/(1 + x ^(2)))+ cos ^(-1) ((2x )/(1 +x ^(2)))= pi/3, then the vlaue of x is equal to

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Let omega!=1 be a cube root of unit and Delta=|(1-omega-omega^(2),2,...

    Text Solution

    |

  2. Suppose x=-1/3(1+sqrt(7)i) and y="cos"(pi)/4+I"sin"(pi)/4 Let Delta=...

    Text Solution

    |

  3. Let x="cos"(pi)/3+i "sin"(pi)/3 and Delta=|(1,x,x^(2)),(x^(2),1,x),(...

    Text Solution

    |

  4. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  5. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  6. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  7. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  8. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  9. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  10. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  11. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  12. If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(...

    Text Solution

    |

  13. If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,si...

    Text Solution

    |

  14. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  15. Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(...

    Text Solution

    |

  16. If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ...

    Text Solution

    |

  17. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  18. If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a...

    Text Solution

    |

  19. If theta, phi epsilon R, then the determinant Delta=|(cos theta, - s...

    Text Solution

    |

  20. If Delta(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta(2)=|(a,b,c...

    Text Solution

    |