Home
Class 12
MATHS
Let f:NtoN be defined by f(x)=(x+1)^(2...

Let `f:NtoN` be defined by
`f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2)`
([] denotes the greatest integer function). Suppose a,b,c are three distinct natural numbers. Let
`Delta=|(f(a),a^(2),a),(f(b),b^(2),b),(f(c),c^(2),c)|`
Then `Delta` is equal to

A

`-(a+b+c)`

B

`a+b+c`

C

`-1`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the determinant \( \Delta = |(f(a), a^2, a), (f(b), b^2, b), (f(c), c^2, c)| \) where \( f(x) = (x+1)^2 + x - \lfloor \sqrt{(x+1)^2 + (x+1)} \rfloor^2 \). ### Step 1: Simplify the function \( f(x) \) First, we simplify \( f(x) \): \[ f(x) = (x+1)^2 + x - \lfloor \sqrt{(x+1)^2 + (x+1)} \rfloor^2 \] Calculating \( (x+1)^2 + (x+1) \): \[ (x+1)^2 + (x+1) = x^2 + 2x + 1 + x + 1 = x^2 + 3x + 2 \] Now, we need to find \( \lfloor \sqrt{x^2 + 3x + 2} \rfloor \). ### Step 2: Find \( \sqrt{x^2 + 3x + 2} \) The expression \( x^2 + 3x + 2 \) can be factored: \[ x^2 + 3x + 2 = (x+1)(x+2) \] Thus, \[ \sqrt{x^2 + 3x + 2} = \sqrt{(x+1)(x+2)} \] ### Step 3: Determine \( \lfloor \sqrt{(x+1)(x+2)} \rfloor \) For natural numbers \( x \), \( (x+1)(x+2) \) is always a perfect square or close to it. Therefore, we can analyze the values of \( \lfloor \sqrt{(x+1)(x+2)} \rfloor \): - For \( x = 1 \): \( \sqrt{(1+1)(1+2)} = \sqrt{6} \approx 2.45 \Rightarrow \lfloor \sqrt{6} \rfloor = 2 \) - For \( x = 2 \): \( \sqrt{(2+1)(2+2)} = \sqrt{12} \approx 3.46 \Rightarrow \lfloor \sqrt{12} \rfloor = 3 \) - For \( x = 3 \): \( \sqrt{(3+1)(3+2)} = \sqrt{20} \approx 4.47 \Rightarrow \lfloor \sqrt{20} \rfloor = 4 \) Continuing this process, we find that \( \lfloor \sqrt{(x+1)(x+2)} \rfloor \) will yield \( x + 1 \) for \( x \geq 1 \). ### Step 4: Substitute back into \( f(x) \) Thus, we can simplify \( f(x) \): \[ f(x) = (x+1)^2 + x - (x+1)^2 = x \] ### Step 5: Calculate the determinant \( \Delta \) Now substituting \( f(a) = a \), \( f(b) = b \), \( f(c) = c \): \[ \Delta = |(a, a^2, a), (b, b^2, b), (c, c^2, c)| \] ### Step 6: Evaluate the determinant The determinant can be expressed as: \[ \Delta = \begin{vmatrix} a & a^2 & a \\ b & b^2 & b \\ c & c^2 & c \end{vmatrix} \] Notice that the first and third columns are identical. Therefore, the determinant evaluates to zero: \[ \Delta = 0 \] ### Final Answer \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

Let f :(4,6) uu (6,8) be a function defined by f(x) = x+[(x)/(2)] where [.] denotes the greatest integer function, then f^(-1)(x) is equal to

Let Delta=|(a,x,x),(x,b,x),(x,x,c)| and f(x)=(x-a)(x-b)(x-c) Determinant Delta is equal to

Let f:(6, 8)rarr (9, 11) be a function defined as f(x)=x+[(x)/(2)] (where [.] denotes the greatest integer function), then f^(-1)(x) is equal to

Let f(x)=1+|x|,x =-1, where [* denotes the greatest integer function.Then f{f(-2.3)} is equal to

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Let f(x)=[2^(-x^(2))[2x^(2)]],x epsilon R ( [ ] denotes the greatest i...

    Text Solution

    |

  2. If omega!=1 is a cube root of unity and Delta=|(x+omega^(2),omega,1)...

    Text Solution

    |

  3. Let f:NtoN be defined by f(x)=(x+1)^(2)+x-[sqrt((x+1)^(2)+(x+1))]^(2...

    Text Solution

    |

  4. If x=-9 is a root of |(x,3,7),(2,x,2),(7,6,x)|=0 then other two roots ...

    Text Solution

    |

  5. Delta(1)=|{:(x,b,b),(a,x,b),(a,a,x):}| and Delta(2)=|{:(x,b),(a,x):}| ...

    Text Solution

    |

  6. If x in R and n in I then the determinant Delta= |[sin(npi), sinx-cosx...

    Text Solution

    |

  7. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  8. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  9. If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(...

    Text Solution

    |

  10. If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,si...

    Text Solution

    |

  11. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  12. Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(...

    Text Solution

    |

  13. If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ...

    Text Solution

    |

  14. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  15. If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a...

    Text Solution

    |

  16. If theta, phi epsilon R, then the determinant Delta=|(cos theta, - s...

    Text Solution

    |

  17. If Delta(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta(2)=|(a,b,c...

    Text Solution

    |

  18. If x ,y ,z are different from zero and "Delta"=a b-y c-z a-x b c-z a-x...

    Text Solution

    |

  19. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  20. The number of real values of lambda for which the system of equations ...

    Text Solution

    |