Home
Class 12
MATHS
If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2)...

If `Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(x)-e^(-x))^(2),(pi^(x)-pi^(-x))^(2),-2)|` then` Delta(x)` equals

A

`x^(2)`

B

`x^(2)-1`

C

`e^(x^(2))-pi^(x^(2))`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta(x) = \begin{vmatrix} 1 & 1 & 1 \\ (e^x + e^{-x})^2 & (\pi^x + \pi^{-x})^2 & 2 \\ (e^x - e^{-x})^2 & (\pi^x - \pi^{-x})^2 & -2 \end{vmatrix} \), we will follow these steps: ### Step 1: Write down the determinant We start with the determinant as given: \[ \Delta(x) = \begin{vmatrix} 1 & 1 & 1 \\ (e^x + e^{-x})^2 & (\pi^x + \pi^{-x})^2 & 2 \\ (e^x - e^{-x})^2 & (\pi^x - \pi^{-x})^2 & -2 \end{vmatrix} \] ### Step 2: Simplify the second row Notice that \( (e^x + e^{-x})^2 = e^{2x} + 2 + e^{-2x} \) and \( (e^x - e^{-x})^2 = e^{2x} - 2 + e^{-2x} \). We can denote \( a = e^x \) and \( b = \pi^x \) for simplicity. Thus: - \( (e^x + e^{-x})^2 = a^2 + 2 + \frac{1}{a^2} \) - \( (e^x - e^{-x})^2 = a^2 - 2 + \frac{1}{a^2} \) - \( (\pi^x + \pi^{-x})^2 = b^2 + 2 + \frac{1}{b^2} \) - \( (\pi^x - \pi^{-x})^2 = b^2 - 2 + \frac{1}{b^2} \) ### Step 3: Perform row operations We perform the row operation \( R_2 \leftarrow R_2 - R_3 \): \[ R_2 = \begin{pmatrix} (e^x + e^{-x})^2 - (e^x - e^{-x})^2 & (\pi^x + \pi^{-x})^2 - (\pi^x - \pi^{-x})^2 & 2 - (-2) \end{pmatrix} \] Calculating the first two elements: - \( (e^x + e^{-x})^2 - (e^x - e^{-x})^2 = 4 \cdot e^x \cdot e^{-x} = 4 \) - \( (\pi^x + \pi^{-x})^2 - (\pi^x - \pi^{-x})^2 = 4 \cdot \pi^x \cdot \pi^{-x} = 4 \) Thus, the new second row becomes: \[ R_2 = \begin{pmatrix} 4 & 4 & 4 \end{pmatrix} \] ### Step 4: Update the determinant Now the determinant looks like: \[ \Delta(x) = \begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 4 \\ (e^x - e^{-x})^2 & (\pi^x - \pi^{-x})^2 & -2 \end{vmatrix} \] ### Step 5: Check for proportionality Notice that the second row \( R_2 \) is proportional to the first row \( R_1 \) (both are multiples of 1). Thus, we can conclude that: \[ \Delta(x) = 0 \] ### Final Answer Therefore, the value of \( \Delta(x) \) is: \[ \Delta(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) e^(x^(2))/(e^(x^(2)+ e^((pi/2-x)^(2))))dx=

Let f(x)=(x^(2)-1)(pi-e^(x)) then

Let f(x)=(x^(2)-1)(pi-e^(x)) then

int_(-pi/3)^(pi/3) [ sin^5x+ln((1+x)/(1-x))+((e^x-e^(-x))/2)]dx is

Lim_(x rarr(pi)/(2))(e^(cos x)-1)/((pi)/(2)-x)

int_((-pi)/(2))^((pi)/(2))((cos x)/(1-e^(x)))dx=

f(x)=(cos x-sin2x)/((pi-2x)^(2));g(x)=(e^(-cos x)-1)/(8x-4 pi)

If int_(log" "2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6) , then e^(x) is equal to

int_(-pi//4)^(pi//4)(e^(x)(x^(3)sinx))/(e^(2x)-1)dx equals

(pi^(e))/(xe)+(e^(pi))/(x-pi)+(pi^(pi)+e^(e))/(x-pi-e)=0 has

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Prove that |{:(ax,,by,,cz),(x^(2),,y^(2),,z^(2)),(1,,1,,1):}|=|{:(a,,...

    Text Solution

    |

  2. If f(x)=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-...

    Text Solution

    |

  3. If Delta(x)=|(1,1,1),((e^(x)+e^(-x))^(2),(pi^(x)+pi^(-x))^(2),2),((e^(...

    Text Solution

    |

  4. If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,si...

    Text Solution

    |

  5. The determinant Delta=|{:(a,b,aalpha+c),(b,c,balpha+c),(aalpha+b,balph...

    Text Solution

    |

  6. Prove that all values of theta: |(sintheta, costheta, sin2theta),(sin(...

    Text Solution

    |

  7. If alpha, beta. gamma are the roots of x^3 + px^2 + q = 0, where q=0, ...

    Text Solution

    |

  8. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  9. If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a...

    Text Solution

    |

  10. If theta, phi epsilon R, then the determinant Delta=|(cos theta, - s...

    Text Solution

    |

  11. If Delta(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta(2)=|(a,b,c...

    Text Solution

    |

  12. If x ,y ,z are different from zero and "Delta"=a b-y c-z a-x b c-z a-x...

    Text Solution

    |

  13. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  14. The number of real values of lambda for which the system of equations ...

    Text Solution

    |

  15. The values of k for which the system of equations x+ky-3z=0……..1 3...

    Text Solution

    |

  16. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |

  17. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  18. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  19. The system of homogenous equations (a-1)x+(a+2)y+az=0 (a+1)x+ay+(a...

    Text Solution

    |

  20. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |