Home
Class 12
MATHS
If theta, phi epsilon R, then the determ...

If `theta, phi epsilon R`, then the determinant
`Delta=|(cos theta, - sin theta, 1),(sin theta, cos theta, 1),(cos(theta+phi),-sin(theta+phi),0)|`
lies in the interval

A

`[-sqrt(2),sqrt(2)]`

B

`[-1,1]`

C

`[-sqrt(2),1]`

D

`[-1,sqrt(2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ \Delta = \begin{vmatrix} \cos \theta & -\sin \theta & 1 \\ \sin \theta & \cos \theta & 1 \\ \cos(\theta + \phi) & -\sin(\theta + \phi) & 0 \end{vmatrix} \] we will use the properties of determinants and some trigonometric identities. ### Step 1: Expand the determinant Using the determinant expansion along the third column, we have: \[ \Delta = 1 \cdot \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} + 1 \cdot \begin{vmatrix} \cos \theta & 1 \\ \sin \theta & 1 \end{vmatrix} \cdot (-1) + 0 \] ### Step 2: Calculate the first 2x2 determinant The first determinant is: \[ \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1 \] ### Step 3: Calculate the second 2x2 determinant The second determinant is: \[ \begin{vmatrix} \cos \theta & 1 \\ \sin \theta & 1 \end{vmatrix} = \cos \theta \cdot 1 - \sin \theta \cdot 1 = \cos \theta - \sin \theta \] ### Step 4: Substitute back into the determinant Now substituting back into our expression for \(\Delta\): \[ \Delta = 1 - (\cos \theta - \sin \theta) = 1 - \cos \theta + \sin \theta \] ### Step 5: Simplify the expression Thus, we have: \[ \Delta = \sin \theta - \cos \theta + 1 \] ### Step 6: Find the range of \(\Delta\) To find the range of \(\Delta\), we can express it as: \[ \Delta = 1 + \sin \theta - \cos \theta \] Using the identity \( \sin \theta - \cos \theta = \sqrt{2} \sin\left(\theta - \frac{\pi}{4}\right) \), we can rewrite: \[ \Delta = 1 + \sqrt{2} \sin\left(\theta - \frac{\pi}{4}\right) \] The range of \(\sin\left(\theta - \frac{\pi}{4}\right)\) is \([-1, 1]\). Therefore, the range of \( \sqrt{2} \sin\left(\theta - \frac{\pi}{4}\right) \) is \([- \sqrt{2}, \sqrt{2}]\). Thus, the range of \(\Delta\) becomes: \[ 1 - \sqrt{2} \leq \Delta \leq 1 + \sqrt{2} \] ### Final Result The determinant \(\Delta\) lies in the interval: \[ [1 - \sqrt{2}, 1 + \sqrt{2}] \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

2sin(theta-phi)=sin(theta+phi)=1

The determinant |(cos(theta+phi),-sin(theta+phi),cos2phi),(sintheta,costheta,sinphi),(-costheta,sintheta,cosphi)| is

if determinant |{:( cos (theta + phi),,-sin (theta+phi),,cos 2phi),(sin theta,,cos theta,,sin phi),(-cos theta,,sintheta,,cos phi):}| is

(1+cos theta+sin theta)/(1+cos theta-sin theta)=(1+sin theta)/(cos theta)

Prove (cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

The value of the determinant ,cos(theta+phi),-sin(theta+phi),cos2 phisin theta,cos theta,sin phi-cos theta,sin theta,cos phi]| is

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

If 3tan theta tan phi=1 then (cos(theta-phi))/(cos(theta+phi)) is

If 3tan theta tan phi=1, then prove that 2cos(theta+phi)+cos(theta-phi)=0

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If A,B and C are angles of a triangle then the determinant |(-1,cosC...

    Text Solution

    |

  2. If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a...

    Text Solution

    |

  3. If theta, phi epsilon R, then the determinant Delta=|(cos theta, - s...

    Text Solution

    |

  4. If Delta(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta(2)=|(a,b,c...

    Text Solution

    |

  5. If x ,y ,z are different from zero and "Delta"=a b-y c-z a-x b c-z a-x...

    Text Solution

    |

  6. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  7. The number of real values of lambda for which the system of equations ...

    Text Solution

    |

  8. The values of k for which the system of equations x+ky-3z=0……..1 3...

    Text Solution

    |

  9. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |

  10. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  11. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  12. The system of homogenous equations (a-1)x+(a+2)y+az=0 (a+1)x+ay+(a...

    Text Solution

    |

  13. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  14. If a,b,c are non-zeroes then the system of equations (alpha+a)x+alphay...

    Text Solution

    |

  15. if the system of equation ax+y+z=0, x+by=z=0,and x+y+cz=0 (a,b,c!=1) h...

    Text Solution

    |

  16. If a^(2)+b^(2)+c^(2)=-2 and |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((...

    Text Solution

    |

  17. Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cose...

    Text Solution

    |

  18. if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

    Text Solution

    |

  19. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  20. If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos...

    Text Solution

    |