Home
Class 12
MATHS
If Delta(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+...

If `Delta_(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)|` and `Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)|` then `Delta_(1)-Delta_(2)` equual

A

0

B

`3abc`

C

`6abc`

D

`2(a^(3)+b^(3)+c^(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinants \( \Delta_1 \) and \( \Delta_2 \) and find \( \Delta_1 - \Delta_2 \). 1. **Define the Determinants**: \[ \Delta_1 = \begin{vmatrix} b+c & a-b & a \\ c+a & b-c & b \\ a+b & c-a & c \end{vmatrix} \] \[ \Delta_2 = \begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \] 2. **Simplify \( \Delta_1 \)**: We can simplify \( \Delta_1 \) by performing column operations. Let's replace column 2 with column 2 minus column 3: \[ \Delta_1 = \begin{vmatrix} b+c & (a-b) - a & a \\ c+a & (b-c) - b & b \\ a+b & (c-a) - c & c \end{vmatrix} \] This simplifies to: \[ \Delta_1 = \begin{vmatrix} b+c & -b & a \\ c+a & -c & b \\ a+b & -a & c \end{vmatrix} \] 3. **Factor out the common terms**: Notice that each entry in the second column has a negative sign. We can factor out \(-1\): \[ \Delta_1 = -1 \cdot \begin{vmatrix} b+c & b & a \\ c+a & c & b \\ a+b & a & c \end{vmatrix} \] 4. **Perform another column operation**: Now, we can replace column 1 with column 1 plus column 2: \[ \Delta_1 = -1 \cdot \begin{vmatrix} (b+c) + b & b & a \\ (c+a) + c & c & b \\ (a+b) + a & a & c \end{vmatrix} \] This simplifies to: \[ \Delta_1 = -1 \cdot \begin{vmatrix} 2b+c & b & a \\ c+2a & c & b \\ 2a+b & a & c \end{vmatrix} \] 5. **Recognize the structure**: Notice that the structure of the determinant is similar to \( \Delta_2 \). We can rearrange the columns of \( \Delta_1 \) to match the form of \( \Delta_2 \) and apply the determinant properties. 6. **Relate \( \Delta_1 \) to \( \Delta_2 \)**: After rearranging, we find that: \[ \Delta_1 = -\Delta_2 \] 7. **Calculate \( \Delta_1 - \Delta_2 \)**: Now we can compute: \[ \Delta_1 - \Delta_2 = -\Delta_2 - \Delta_2 = -2\Delta_2 \] 8. **Final Result**: Since \( \Delta_2 \) is a determinant that can be evaluated, we conclude: \[ \Delta_1 - \Delta_2 = 0 \quad \text{(if } \Delta_2 \text{ is equal to } 0\text{)} \] Thus, the final answer is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

If Delta_(1) = |(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|, Delta_(2) = |(1,bc,a),(1,ca,b),(1,ab,c) | , then

Let a,b,c , in R not all are equal and Delta_(1)= |{:(a,,b,,c),(b,,c,,a),(c,,a,,b):}| Delta_(2)= |{:(a+2b,,b+3c,,c+4a),(b+2c,,c+3a,,a+4b),(c+2a,,a+3b,,b+4c):}|" then " (Delta_(2))/(Delta_(1)) = "____"

Suppose a,b,c are sides of a scalene triangle. Let Delta=|(a,b,c),(b,c,a),(c,a,b)| Then

If a,b,c are there given non-coplanar vectors and any arbitrary vector r is in space. Where, Delta_(1) =|{:(r.a,b.a,c.a),(r.b,b.b,a.b),(r.a,b.c,c.c):}|, Delta_(2)=|{:(a.a,r.a,c.a),(a.b,r.b,c.b),(a.c,r.c,c.c):}|, Delta_(3) =|{:(a.a,b.a,r.a),(a.b,b.b,r.b),(a.c,b.c,r.c):}|, Delta=|{:(a.a,b.a,c.a),(a.b,b.b,c.b),(a.c,c.c,c.c):}| The value of |{:(a,b,c),(a.p,b.p,c.p),(a.q,b.q,c.q):}| is:

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If a^(2) + b^(2) + c^(2) = 0 and |(b^(2) + c^(2) ,ab,ac),(ab,c^(2) + a...

    Text Solution

    |

  2. If theta, phi epsilon R, then the determinant Delta=|(cos theta, - s...

    Text Solution

    |

  3. If Delta(1)=|(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)| and Delta(2)=|(a,b,c...

    Text Solution

    |

  4. If x ,y ,z are different from zero and "Delta"=a b-y c-z a-x b c-z a-x...

    Text Solution

    |

  5. If p + q + r = a + b + c = 0, then the determinant |{:(pa,qb,rc),(qc,r...

    Text Solution

    |

  6. The number of real values of lambda for which the system of equations ...

    Text Solution

    |

  7. The values of k for which the system of equations x+ky-3z=0……..1 3...

    Text Solution

    |

  8. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |

  9. Given , 2x-y+2z=2, x-2y+z=-4, x+y+lambdaz=4, then the value of lam...

    Text Solution

    |

  10. If the system of linear equations x + 2ay + az = 0 x + 3by + bz = ...

    Text Solution

    |

  11. The system of homogenous equations (a-1)x+(a+2)y+az=0 (a+1)x+ay+(a...

    Text Solution

    |

  12. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1 ...

    Text Solution

    |

  13. If a,b,c are non-zeroes then the system of equations (alpha+a)x+alphay...

    Text Solution

    |

  14. if the system of equation ax+y+z=0, x+by=z=0,and x+y+cz=0 (a,b,c!=1) h...

    Text Solution

    |

  15. If a^(2)+b^(2)+c^(2)=-2 and |{:(1+a^(2)x,(1+b^(2))x,(1+c^(2))x),((...

    Text Solution

    |

  16. Let f(x) = |{:(secx,cosx,sec^(2)x+cotx cosecx),(cos^(2)x,cos^(2)x,cose...

    Text Solution

    |

  17. if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

    Text Solution

    |

  18. If a != b != c, are value of x which satisfies the equation |(0,x -a...

    Text Solution

    |

  19. If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos...

    Text Solution

    |

  20. If a,b,and c are the side of a triangle and A,B and C are the angles o...

    Text Solution

    |