Home
Class 12
MATHS
If |(a+b+2c,a,b),(c,2a+b+c,b),(c,a,a+2...

If
`|(a+b+2c,a,b),(c,2a+b+c,b),(c,a,a+2b+c)|=432/125`
then `a+b+c=`________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given in the problem, we start with the determinant: \[ D = \begin{vmatrix} a+b+2c & a & b \\ c & 2a+b+c & b \\ c & a & a+2b+c \end{vmatrix} \] We need to compute this determinant and set it equal to \(\frac{432}{125}\). ### Step 1: Simplifying the Determinant First, we can simplify the determinant by using the properties of determinants. We can perform row operations to make the calculations easier. Let's denote \( S = a + b + c \). We can express the first row in terms of \( S \): \[ D = \begin{vmatrix} S + c & a & b \\ c & 2a + S & b \\ c & a & S + b \end{vmatrix} \] ### Step 2: Row Operations Next, we can subtract the first row from the second and third rows to eliminate \( c \): \[ D = \begin{vmatrix} S + c & a & b \\ 0 & (2a + S - a) & (b - b) \\ 0 & (a - a) & (S + b - b) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} S + c & a & b \\ 0 & a + S & 0 \\ 0 & 0 & S \end{vmatrix} \] ### Step 3: Calculating the Determinant The determinant of a triangular matrix is the product of its diagonal elements: \[ D = (S + c)(a + S)(S) \] ### Step 4: Setting the Determinant Equal to the Given Value Now we set this equal to \(\frac{432}{125}\): \[ (S + c)(a + S)S = \frac{432}{125} \] ### Step 5: Substituting \( S = a + b + c \) Now, we substitute back \( S = a + b + c \): \[ ((a + b + c) + c)(a + (a + b + c))(a + b + c) = \frac{432}{125} \] This simplifies to: \[ (a + b + 2c)(2a + b + c)(a + b + c) = \frac{432}{125} \] ### Step 6: Solving for \( a + b + c \) Let \( x = a + b + c \). Then we have: \[ (x + c)(2a + b + c)x = \frac{432}{125} \] To find \( x \), we can try different values or solve the equation numerically or algebraically. ### Final Step: Finding \( a + b + c \) After solving the equation, we find: \[ a + b + c = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b):}|=2(a+b+c)^(3)

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c^2) then thhe value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

evaluate: |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If Delta_(1)=|(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)| and Delta_(2)=|(a,b,c),(b,c,a),(c,a,b)| then (Delta_(1))/(Delta_(2))= _______

Using properties of determinants Prove that |{:(a+b+c,,-c,,-b),(-c,,a+b+c,,-a),( -b,,-a,,a+b+c):}| = 2 (a+b) (b+c) (c+a)

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)
  1. Suppose 3/((x-1)(x^(2)+x+1))=f(1)(x)-f(2)(x) where f(1)(x)=1/(x-1)...

    Text Solution

    |

  2. Suppose a(1),a(2),a(3),a(4)gt0. If periods of sin(a(1)pix+b(1)),cos(a(...

    Text Solution

    |

  3. Suppose f(a,b,x,y)=|(1,x,x^(2)),(cos((a-b)y),cos(ay),cos((a+b)y)),(s...

    Text Solution

    |

  4. If |(a+b+2c,a,b),(c,2a+b+c,b),(c,a,a+2b+c)|=432/125 then a+b+c=

    Text Solution

    |

  5. Let f(x)=|(5x-8,3,3),(3,5x-8,3),(3,3,5x-8)| Sum of the roots of f(x)...

    Text Solution

    |

  6. Let N=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| Then N/((10!)(11...

    Text Solution

    |

  7. Suppose a,b,c are real numbers such that |(1+a,1,1),(1,1+b,1),(1,1,1...

    Text Solution

    |

  8. Suppose |(b+c,a,b),(c+a,c,a),(a+b,b,c)|=4k(a+b+c)(c-a)^(2)……………1 wh...

    Text Solution

    |

  9. Evaluate |{:(265, 240, 219),(240, 225, 198), (219, 198, 181):}|

    Text Solution

    |

  10. Suppose (a(1),b(1)),(a(2),b(2)) and (a(3),b(3)) are vertices of an equ...

    Text Solution

    |

  11. Suppose a,b,cgt0. If |(x(1),y(1),2a),(x(2),y(2),2b),(x(3),y(3),2c)|=...

    Text Solution

    |

  12. Let f(x)=|(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x)| then |f(2.9)^(1//3)|=

    Text Solution

    |

  13. If alpha is a cube root of unity, then find the value of |[alpha,alp...

    Text Solution

    |

  14. Suppose a(1)+a(2)+a(3)+1.3,b(1)+b(2)+b(3)=2.1,c(1)+c(2)+c(3)=1.6 and ...

    Text Solution

    |

  15. Suppose a,b,c are three distinct real numbers such that a,b,c !=1.1 an...

    Text Solution

    |

  16. Suppose A is a 3xx3 matrix such that det(A)=2.2 then ("det"(adj(adjA))...

    Text Solution

    |

  17. For x epsilon R let f(x)=|((x-4)^(2),(x-3)^(2),(x-2)^(2)),((x-3)^(2...

    Text Solution

    |