Home
Class 12
MATHS
Suppose a(1)+a(2)+a(3)+1.3,b(1)+b(2)+b(3...

Suppose `a_(1)+a_(2)+a_(3)+1.3,b_(1)+b_(2)+b_(3)=2.1,c_(1)+c_(2)+c_(3)=1.6` and
`Delta(x)=|(1+a_(1)x,1+b_(1)x,1+c_(1)x),(1+a_(2)x,1+b_(2)x,1+c_(3)x),(1+a_(3)x,1+b_(3)x,1+c4x)|`
`=A_(0)+A_(1)x+A_(2)x^(2)+A_(2)x^(3)`,
then `A_(1)=`_________

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the coefficient \( A_1 \) in the expression for \( \Delta(x) \). Let's break down the steps systematically. ### Step 1: Understand the given equations We have the following equations: 1. \( a_1 + a_2 + a_3 = 1.3 \) 2. \( b_1 + b_2 + b_3 = 2.1 \) 3. \( c_1 + c_2 + c_3 = 1.6 \) ### Step 2: Write the determinant The determinant \( \Delta(x) \) is given by: \[ \Delta(x) = \begin{vmatrix} 1 + a_1 x & 1 + b_1 x & 1 + c_1 x \\ 1 + a_2 x & 1 + b_2 x & 1 + c_2 x \\ 1 + a_3 x & 1 + b_3 x & 1 + c_3 x \end{vmatrix} \] ### Step 3: Expand the determinant To find \( A_1 \), we need to compute the determinant and identify the coefficient of \( x \). We can expand the determinant using the properties of determinants. ### Step 4: Calculate the determinant Using the determinant properties: \[ \Delta(x) = \begin{vmatrix} 1 + a_1 x & 1 + b_1 x & 1 + c_1 x \\ 1 + a_2 x & 1 + b_2 x & 1 + c_2 x \\ 1 + a_3 x & 1 + b_3 x & 1 + c_3 x \end{vmatrix} \] This can be simplified by factoring out the \( x \) terms: \[ = \begin{vmatrix} 1 & 1 & 1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + x \cdot \begin{vmatrix} 0 & 1 & 1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \] ### Step 5: Identify the coefficient of \( x \) The coefficient of \( x \) in the expansion will be: \[ A_1 = b_2 + c_3 - b_3 - c_2 + a_2 + c_3 - a_3 - b_2 + a_2 + b_3 - a_3 - b_2 \] ### Step 6: Substitute the values Now we substitute the values we have: 1. \( a_1 + a_2 + a_3 = 1.3 \) 2. \( b_1 + b_2 + b_3 = 2.1 \) 3. \( c_1 + c_2 + c_3 = 1.6 \) ### Step 7: Calculate \( A_1 \) After substituting and simplifying, we find: \[ A_1 = (b_2 + c_3 - b_3 - c_2) + (a_2 + c_3 - a_3 - b_2) + (a_2 + b_3 - a_3 - b_2) \] ### Final Result After simplification, we find that \( A_1 \) is equal to: \[ A_1 = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If |(1 +ax,1 +bx,1 + bx),(1 +a_(1) x,1 +b_(1) x,1 + c_(1) x),(1 + a_(2) x,1 + b_(2) x,1 + c_(2) x)| = A_(0) + A_(1) x + A_(2) x^(2) + A_(3) x^(3) , then A_(1) is equal to

det[[1+ax,1+bx,1+cx1+a_(1)x,1+b_(1)x,1+c_(1)x1+a_(2)x,1+b_(2)x,1+c_(2)x the find the value of A_(1)]]=A_(0)+A_(1)x+A_(2)x^(2)+A_(3)x^(3)

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

If, in D={:[(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))]:}, the co-factor of a_(r)" is "A_(r), then , c_(1)A_(1)+c_(2)A_(2)+c_(3)A_(3)=

If (1+2x+3x^(2) )^(10) = a_(0) + a_(1) x + a_(2) x^(2) +…+a_(20) x^(20) , then

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)
  1. Suppose 3/((x-1)(x^(2)+x+1))=f(1)(x)-f(2)(x) where f(1)(x)=1/(x-1)...

    Text Solution

    |

  2. Suppose a(1),a(2),a(3),a(4)gt0. If periods of sin(a(1)pix+b(1)),cos(a(...

    Text Solution

    |

  3. Suppose f(a,b,x,y)=|(1,x,x^(2)),(cos((a-b)y),cos(ay),cos((a+b)y)),(s...

    Text Solution

    |

  4. If |(a+b+2c,a,b),(c,2a+b+c,b),(c,a,a+2b+c)|=432/125 then a+b+c=

    Text Solution

    |

  5. Let f(x)=|(5x-8,3,3),(3,5x-8,3),(3,3,5x-8)| Sum of the roots of f(x)...

    Text Solution

    |

  6. Let N=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| Then N/((10!)(11...

    Text Solution

    |

  7. Suppose a,b,c are real numbers such that |(1+a,1,1),(1,1+b,1),(1,1,1...

    Text Solution

    |

  8. Suppose |(b+c,a,b),(c+a,c,a),(a+b,b,c)|=4k(a+b+c)(c-a)^(2)……………1 wh...

    Text Solution

    |

  9. Evaluate |{:(265, 240, 219),(240, 225, 198), (219, 198, 181):}|

    Text Solution

    |

  10. Suppose (a(1),b(1)),(a(2),b(2)) and (a(3),b(3)) are vertices of an equ...

    Text Solution

    |

  11. Suppose a,b,cgt0. If |(x(1),y(1),2a),(x(2),y(2),2b),(x(3),y(3),2c)|=...

    Text Solution

    |

  12. Let f(x)=|(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x)| then |f(2.9)^(1//3)|=

    Text Solution

    |

  13. If alpha is a cube root of unity, then find the value of |[alpha,alp...

    Text Solution

    |

  14. Suppose a(1)+a(2)+a(3)+1.3,b(1)+b(2)+b(3)=2.1,c(1)+c(2)+c(3)=1.6 and ...

    Text Solution

    |

  15. Suppose a,b,c are three distinct real numbers such that a,b,c !=1.1 an...

    Text Solution

    |

  16. Suppose A is a 3xx3 matrix such that det(A)=2.2 then ("det"(adj(adjA))...

    Text Solution

    |

  17. For x epsilon R let f(x)=|((x-4)^(2),(x-3)^(2),(x-2)^(2)),((x-3)^(2...

    Text Solution

    |