Home
Class 12
MATHS
Let D=|(10!,11!,12!),(11!,12!,13!),(12!,...

Let `D=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)|` then `D/((10!)^(3)-260` equals

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( D = \begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14! \end{vmatrix} \) and then compute \( \frac{D}{(10!)^3 - 260} \). ### Step 1: Simplify the Determinant We can factor out \( 10! \) from each row of the determinant: \[ D = \begin{vmatrix} 10! & 11! & 12! \\ 11! & 12! & 13! \\ 12! & 13! & 14! \end{vmatrix} = 10! \begin{vmatrix} 1 & 11 & 12 \\ 11 & 12 & 13 \\ 12 & 13 & 14 \end{vmatrix} \] ### Step 2: Calculate the 3x3 Determinant Now we need to calculate the determinant \( \begin{vmatrix} 1 & 11 & 12 \\ 11 & 12 & 13 \\ 12 & 13 & 14 \end{vmatrix} \). Using the formula for the determinant of a 3x3 matrix: \[ \text{Det} = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( a, b, c \) are the elements of the first row, and \( d, e, f, g, h, i \) are the elements of the second and third rows respectively. Substituting the values: \[ \text{Det} = 1 \cdot (12 \cdot 14 - 13 \cdot 13) - 11 \cdot (11 \cdot 14 - 12 \cdot 13) + 12 \cdot (11 \cdot 13 - 12 \cdot 12) \] Calculating each term: 1. \( 12 \cdot 14 - 13 \cdot 13 = 168 - 169 = -1 \) 2. \( 11 \cdot 14 - 12 \cdot 13 = 154 - 156 = -2 \) 3. \( 11 \cdot 13 - 12 \cdot 12 = 143 - 144 = -1 \) Now substituting these values back into the determinant formula: \[ \text{Det} = 1 \cdot (-1) - 11 \cdot (-2) + 12 \cdot (-1) = -1 + 22 - 12 = 9 \] ### Step 3: Substitute Back to Find D Now substituting back to find \( D \): \[ D = 10! \cdot 9 \] ### Step 4: Compute \( D / ((10!)^3 - 260) \) Now we need to compute \( \frac{D}{(10!)^3 - 260} \): First, calculate \( (10!)^3 \): \[ (10!)^3 = (10!)^3 \] Now substitute \( D \): \[ \frac{D}{(10!)^3 - 260} = \frac{10! \cdot 9}{(10!)^3 - 260} \] ### Final Step: Simplify the Expression This gives us: \[ \frac{9 \cdot 10!}{(10!)^3 - 260} \] This is the final expression for the value of \( \frac{D}{(10!)^3 - 260} \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let N=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| Then N/((10!)(11!)(12!))= ______

if D=det[[10!,11!,12!11!,12!,13!12!,13!,14!]] then (D)/((10!)^(3))-4 is:

Evaluate: o+=det[[10!,11!,12!11!,12!,13!12!,13!,14!]]

Evaluate: =|10!11!12!11:12!13!12!13!14!

If D=|[10!,11!,12!],[11!,12!,13!],[12!,13!,14!]| then k/3, where k is the total number of positive divisors of (D)/((10!)^(3))-4 is

The value of the determinant |(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| , is

{:(8,7,10,12),(13,12,15,17),(10,9,?,14):}

{:(9,11,13),(13,15,17),(10,12,14),(14,16,18),(11,13,?):}