Home
Class 12
MATHS
An equilateral triangle has each side eq...

An equilateral triangle has each side equal to a, If `(x_1, y_1) , (x_2, y_2) , (x_3, y_3)` are the vertices of the triangle then `|[x_1 , y_1, 1] , [x_2, y_2, 1] , [x_3, y_3, 1]|^2=`

A

64

B

128

C

192

D

256

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

An equilateral triangle has each side equal to a,If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are the vertices of the triangle then det[[x_(1),y_(1),1x_(2),y_(2),1x_(3),y_(3),1]]^(2)=

An equilateral triangle has each side equal to a,If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are the vertices of the triangle then det[[x_(1),y_(1),1x_(2),y_(2),1x_(3),y_(3),1]]^(2)=

If A(x_(1),y_(1)),B(x_(2),y_(2)),C(x_(3),y_(3)) are the vertices of the triangle then show that:'

An equilateral triangle has each of its sides of length 6 cm. If (x_1, y_1);(x_2, y_2)&(x_3, y_3) are its vertices, then the value of the determinant |x_1y_1 1x_2y_2 1x_3y_3 1|^2 is equal to: 192 (b) 243 (c) 486 (d) 972

An equilateral triangle has each of its sides of length 6c mdot If (x_1, y_1);(x_2, y_2)&(x_3, y_3) are its vertices, has the value of the determinant |x_1y_1 1x_2y_2 1x_3y_3 1| is equal to: 192 b. 243 c. 486 d. 972

An equilateral triangle has each of its sides of length 6 cm. If (x_(1),y_(1)), (x_(2),y_(2)) & (x_(3),y_(3)) are the verticles, then the value of the determinant |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^(2) is equal to :

An equilateral triangle has each of its sides of length 4 cm. If (x_(r),y_(r)) (r=1,2,3) are its vertices the value of |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|

If A(x_(1),y_(1)),B(x_(2),y_(2)) and C(x_(3),y_(3)) are the vertices of a triangle then excentre with respect to B is

A triangle has its three sides equal to a , b and c . If the coordinates of its vertices are A(x_1, y_1),B(x_2,y_2)a n dC(x_3,y_3), show that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=(a+b+c)(b+c-a)(c+a-b)(a+b-c)

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4