Home
Class 12
MATHS
Suppose a,b are two non zero numbers. Le...

Suppose a,b are two non zero numbers. Let
`Delta=|(2,a+b,a^(2)+b^(2)),(a+b,a^(2)+b^(2),a^(3)+b^(3)),(a^(2)+b^(2),a^(3)+b^(3),a^(4)+b^(4))|` then `Delta` is equal to

A

0

B

ab

C

`a^(6)+b^(6)`

D

`a^(3)b^(5)+a^(5)b^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( \Delta \) given by \[ \Delta = \begin{vmatrix} 2 & a+b & a^2+b^2 \\ a+b & a^2+b^2 & a^3+b^3 \\ a^2+b^2 & a^3+b^3 & a^4+b^4 \end{vmatrix} \] we will perform row operations to simplify the determinant. ### Step 1: Write the determinant We start with the determinant as it is: \[ \Delta = \begin{vmatrix} 2 & a+b & a^2+b^2 \\ a+b & a^2+b^2 & a^3+b^3 \\ a^2+b^2 & a^3+b^3 & a^4+b^4 \end{vmatrix} \] ### Step 2: Perform row operations We will perform the following row operations: - Replace \( R_2 \) with \( R_2 - \frac{(a+b)}{2} R_1 \) - Replace \( R_3 \) with \( R_3 - \frac{(a^2+b^2)}{a+b} R_2 \) This will help in simplifying the determinant. ### Step 3: Calculate \( R_2 \) Calculating \( R_2 \): \[ R_2 = \begin{pmatrix} a+b & a^2+b^2 & a^3+b^3 \end{pmatrix} - \frac{(a+b)}{2} \begin{pmatrix} 2 & a+b & a^2+b^2 \end{pmatrix} \] This gives: \[ R_2 = \begin{pmatrix} 0 & 0 & a^3+b^3 - \frac{(a+b)(a^2+b^2)}{2} \end{pmatrix} \] ### Step 4: Calculate \( R_3 \) Now, calculating \( R_3 \): \[ R_3 = \begin{pmatrix} a^2+b^2 & a^3+b^3 & a^4+b^4 \end{pmatrix} - \frac{(a^2+b^2)}{(a+b)} R_2 \] This will also simplify \( R_3 \). ### Step 5: Substitute back into the determinant After performing the row operations, we can substitute back into the determinant: \[ \Delta = \begin{vmatrix} 2 & a+b & a^2+b^2 \\ 0 & 0 & \text{(some expression)} \\ 0 & 0 & \text{(another expression)} \end{vmatrix} \] ### Step 6: Evaluate the determinant Since the second and third rows have become linear combinations that lead to zeros, the determinant simplifies to: \[ \Delta = 0 \] ### Conclusion Thus, the value of \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

If a+b=1 , then a^(4)+b^(4)-a^(3)-b^(3)-2a^(2)b^(2)+ab is equal to :

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

Suppose a,b,c are distinct real number and Delta=|(a,a^(2),b+c),(b,b^(2),c+a),(c,c^(2),a+b)|=0 Then a+b+c equals

Suppose a,b,c are three integers such altbltc and p is a prime number Let Delta=|(a,a^(2),p+a^(3)),(b,b^(2),p+b^(3)),(c,c^(2),p+c^(3))| If Delta=0 then which one of the following is not true

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that