Home
Class 12
MATHS
Suppose a,b,cgt1. Let Delta=|(loga,log...

Suppose `a,b,cgt1`. Let
`Delta=|(loga,logb,logc),(log(2007a),log(2007b),log(2007c)),(log(2017a),log(2017b),log(2017c))|` then `Delta` is equal to

A

0

B

`log(4024abc)`

C

`log(2017/2007)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} \log a & \log b & \log c \\ \log(2007a) & \log(2007b) & \log(2007c) \\ \log(2017a) & \log(2017b) & \log(2017c) \end{vmatrix} \), we will follow these steps: ### Step 1: Expand the logarithms We can express the logarithms of products using the property \( \log(xy) = \log x + \log y \). \[ \log(2007a) = \log 2007 + \log a, \quad \log(2007b) = \log 2007 + \log b, \quad \log(2007c) = \log 2007 + \log c \] \[ \log(2017a) = \log 2017 + \log a, \quad \log(2017b) = \log 2017 + \log b, \quad \log(2017c) = \log 2017 + \log c \] ### Step 2: Rewrite the determinant Substituting these expressions into the determinant, we have: \[ \Delta = \begin{vmatrix} \log a & \log b & \log c \\ \log 2007 + \log a & \log 2007 + \log b & \log 2007 + \log c \\ \log 2017 + \log a & \log 2017 + \log b & \log 2017 + \log c \end{vmatrix} \] ### Step 3: Factor out common terms We can factor out the common terms from the second and third rows: \[ \Delta = \begin{vmatrix} \log a & \log b & \log c \\ \log a & \log b & \log c \\ \log a & \log b & \log c \end{vmatrix} + \log 2007 \begin{vmatrix} \log a & \log b & \log c \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} + \log 2017 \begin{vmatrix} \log a & \log b & \log c \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{vmatrix} \] ### Step 4: Identify rows that are the same Notice that the second and third rows of the determinant are identical, which means the determinant evaluates to zero: \[ \Delta = 0 \] ### Conclusion Thus, the value of \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Suppose a,b,c epsilon R and a,b,c gt 0 . Let Delta=|(loga, logb, logc),(log(7a),log(49b),log(343c)),(log(3a),log(9b),log(27c))| then Delta is equals to

If a,b,c gt1 then Delta=|(log_(a)(abc),log_(a)b,log_(a)c),(log_b(abc),1,log_(b)c),(log_(c)(abc),log_(c)b,1)| equals

If log(a+c)+log(a+c-2b)=2log(a-c) then

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

if c(a-b)=a(b-c) then (log(a+c)+log(a-2b+c))/(log(a+c)) is equal to

If a,b,c are distinct real number different from 1 such that (log_(b)a. log_(c)a-log_(a)a) + (log_(a)b.log_(c)b.log_(c)b-log_(b)b) +(log_(a)c.log_(b)c-log_(c)C)=0 , then abc is equal to

If 10^(log_a(log_b(log_c x)))=1 and 10^((log_b(log_c(log_a x)))=1 then, a is equal to

(1)/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c) has the value equal to