Home
Class 12
MATHS
Suppose a,b, c epsilon R on abc!=0. Let ...

Suppose `a,b, c epsilon R` on `abc!=0`. Let
`Delta=|(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c)|`
If `Delta=0`, then `1/a+1/b+1/c` is equal to

A

0

B

`-1`

C

`-2`

D

`-3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta \) and find the condition under which it equals zero. We will then derive the expression for \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \). ### Step 1: Write the Determinant The determinant is given by: \[ \Delta = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 + b & 1 + 2b & 1 \\ 1 + c & 1 + c & 1 + 3c \end{vmatrix} \] ### Step 2: Simplify the Determinant We can perform row operations to simplify the determinant. Let's subtract the second row from the first row: \[ R_1 \rightarrow R_1 - R_2 \] This gives us: \[ \Delta = \begin{vmatrix} a - b & -2b & 0 \\ 1 + b & 1 + 2b & 1 \\ 1 + c & 1 + c & 1 + 3c \end{vmatrix} \] ### Step 3: Further Simplification Next, we can subtract the third column from the second column: \[ C_2 \rightarrow C_2 - C_3 \] This results in: \[ \Delta = \begin{vmatrix} a - b & -2b & 0 \\ 1 + b & 2b & 0 \\ 1 + c & c & 3c \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we can calculate the determinant using the first column: \[ \Delta = (a - b) \begin{vmatrix} 2b & 0 \\ c & 3c \end{vmatrix} - (-2b) \begin{vmatrix} 1 + b & 0 \\ 1 + c & 3c \end{vmatrix} \] Calculating the 2x2 determinants: \[ \Delta = (a - b)(2b \cdot 3c - 0) + 2b \begin{vmatrix} 1 + b & 0 \\ 1 + c & 3c \end{vmatrix} \] \[ = 6bc(a - b) + 2b \cdot (3c(1 + b) - 0) \] \[ = 6bc(a - b) + 6bc \] \[ = 6bc(a - b + 1) \] ### Step 5: Set the Determinant to Zero Since we are given that \( \Delta = 0 \): \[ 6bc(a - b + 1) = 0 \] Since \( abc \neq 0 \), we have: \[ a - b + 1 = 0 \implies a - b = -1 \implies a = b - 1 \] ### Step 6: Find \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) Now substituting \( a = b - 1 \): \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{b - 1} + \frac{1}{b} + \frac{1}{c} \] To combine these fractions, we find a common denominator: \[ = \frac{b \cdot c + (b - 1) \cdot c + (b - 1) \cdot b}{(b - 1) \cdot b \cdot c} \] This simplifies to: \[ = \frac{bc + bc - c + b^2 - b}{(b - 1)bc} = \frac{2bc - c + b^2 - b}{(b - 1)bc} \] ### Step 7: Conclusion After simplifying, we find that: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -3 \] Thus, the final answer is: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = -3 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|60 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Suppose a,b,c,x,y epsilon R . Let Delta=|(1,2+ax,3+ay),(1,2+bx,3+by),(1,2+cx,3+cy)| Then Delta is independnet is

If ane0, bne0,cne0 " "and " |{:(1+a,1,1),(1+b,1+2b,1),(1+c,1+c,1+3c):}| =0 the value of |a^(-1)+b^(-1)+c^(-1)| is equal to

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,1/b+1/c),(1,ca,1/c+1/a)| equals

If a+b+c=2,a^(2)+b^(2)+c^(2)=1 and abc = 3 then 1/a+1/b+1/c is equal to

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is