Home
Class 12
MATHS
The determinant Delta =|(lamda a , lamda...

The determinant `Delta =|(lamda a , lamda^(2)+a^(2),1),(lamda b,lamda^(2)+b^(2),1),(lamdac,lamda^(2)+c^(2),1)|` equals

A

`lamda(a-b)(b-c)(c-a)`

B

`lamda(a^(2)+b^(2)+c^(2))`

C

`lamda(a+b+c)`

D

`lamda^(2)(a-b)(b-c)(c-a)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ \Delta = \begin{vmatrix} \lambda a & \lambda^2 + a^2 & 1 \\ \lambda b & \lambda^2 + b^2 & 1 \\ \lambda c & \lambda^2 + c^2 & 1 \end{vmatrix} \] we can follow these steps: ### Step 1: Apply Row Operations We will perform the operation \( C_2 = C_2 - \lambda^2 C_3 \). This means we will subtract \(\lambda^2\) times the third column from the second column. \[ \Delta = \begin{vmatrix} \lambda a & (\lambda^2 + a^2 - \lambda^2) & 1 \\ \lambda b & (\lambda^2 + b^2 - \lambda^2) & 1 \\ \lambda c & (\lambda^2 + c^2 - \lambda^2) & 1 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} \lambda a & a^2 & 1 \\ \lambda b & b^2 & 1 \\ \lambda c & c^2 & 1 \end{vmatrix} \] ### Step 2: Factor Out \(\lambda\) Now, we can factor out \(\lambda\) from the first column: \[ \Delta = \lambda \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} \] ### Step 3: Recognize the Standard Determinant The determinant \[ \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} \] is a standard determinant that can be evaluated using the formula for the determinant of a matrix of this form, which is given by: \[ (a-b)(b-c)(c-a) \] ### Step 4: Combine the Results Thus, we can write: \[ \Delta = \lambda \cdot (a-b)(b-c)(c-a) \] ### Final Answer The final value of the determinant \(\Delta\) is: \[ \Delta = \lambda (a-b)(b-c)(c-a) \] ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

The matrix A={:[(lamda_(1)^(2),lamda_(1)lamda_(2),lamda_(1)lamda_(3)),(lamda_(2)lamda_(1),lamda_(2)^(2),lamda_(2)lamda_(3)),(lamda_(3)lamda_(1),lamda_(3)lamda_(2),lamda_(3)^(2))]:} is idempotent if lamda_(1)^(2)+lamda_(2)^(2)+lamda_(3)^(2)=k where lamda_(1),lamda_(2),lamda_(3) are non-zero real numbers. Then the value of (10+k)^(2) is . . .

If |(a^(2),b^(2),c^(2)),((a+lamda)^(2),(b+lamda)^(2),(c+lamda)^(2)),((a-lamda)^(2),(b-lamda)^(2),(c-lamda)^(2))|=k lamda|(a^(2),b^(2),c^(2)),(a,b,c),(1,1,1)| lamda!=0 then k is equal to

If |(a^(2),b^(2),c^(2)),((a+lamda)^(2),(b+lamda)^(2),(c+lamda)^(2)),((a-lamda)^(2),(b-lamda)^(2),(c-lamda)^(2))|=k lamda|(a^(2),b^(2),c^(2)),(a,b,c),(1,1,1)| lamda!=0 then k is equal to

The vertices of a DeltaABC are (lamda,2-,2lamda),(-lamda+1,2lamda) and (-4-lamda,6-2lamda) . If its area be 70 units, then number of integral values of lamda is

If p lamda ^(4) + q lamda ^(3) + r lamda ^(2) + s lamda +t = |{:(lamda ^(2) + 3 lamda, lamda -1, lamda +3), ( lamda +1, 2 - lamda , lamda -4), ( lamda -3, lamda+4, 3lamda):}|. then the value of t is

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If alpha,beta & gamma are the roots the equations x^(3)+px+q=0 then th...

    Text Solution

    |

  2. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  3. The determinant Delta =|(lamda a , lamda^(2)+a^(2),1),(lamda b,lamda^(...

    Text Solution

    |

  4. If alpha,beta,gamma are real numbers, then determinant Delta=|(sin^2 a...

    Text Solution

    |

  5. If bc+ca+ab=18 and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))...

    Text Solution

    |

  6. If x!=0 the determinant Delta=|(a(0),a(1),a(2)),(-x,x,0),(0,-x,x)| ...

    Text Solution

    |

  7. If x epsilon R the determinant Delta=|(1,cosx,0),(-1,1-cosx,sinx+cos...

    Text Solution

    |

  8. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  9. Find the maximum value of |1 1 1 1 1+sintheta1 1 1 1+costheta|

    Text Solution

    |

  10. If |(x +a,b,c),(a,x +b,c),(a,b,x +c)| = 0, then x equals

    Text Solution

    |

  11. The determinant |(sec^(2)theta, tan^(2)theta,1),(tan^(2)theta, sec^(...

    Text Solution

    |

  12. If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0 then

    Text Solution

    |

  13. The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

    Text Solution

    |

  14. If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,...

    Text Solution

    |

  15. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  16. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  17. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  18. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  19. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  20. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |