Home
Class 12
MATHS
If x epsilon R the determinant Delta=|...

If `x epsilon R` the determinant
`Delta=|(1,cosx,0),(-1,1-cosx,sinx+cosx),(0,-1,1-sqrt(2)sin(x+pi//4))|` equals

A

0

B

`-1`

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ \Delta = \begin{vmatrix} 1 & \cos x & 0 \\ -1 & 1 - \cos x & \sin x + \cos x \\ 0 & -1 & 1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \end{vmatrix} \] we will use the method of cofactor expansion along the first row. ### Step 1: Expand the determinant using the first row The determinant can be expanded as follows: \[ \Delta = 1 \cdot \begin{vmatrix} 1 - \cos x & \sin x + \cos x \\ -1 & 1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \end{vmatrix} - \cos x \cdot \begin{vmatrix} -1 & \sin x + \cos x \\ 0 & 1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \end{vmatrix} + 0 \] ### Step 2: Calculate the first 2x2 determinant Calculating the first determinant: \[ \begin{vmatrix} 1 - \cos x & \sin x + \cos x \\ -1 & 1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \end{vmatrix} = (1 - \cos x)(1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) - (-1)(\sin x + \cos x) \] This simplifies to: \[ (1 - \cos x)(1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) + \sin x + \cos x \] ### Step 3: Calculate the second 2x2 determinant Calculating the second determinant: \[ \begin{vmatrix} -1 & \sin x + \cos x \\ 0 & 1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \end{vmatrix} = -1 \cdot (1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) - 0 \] This simplifies to: \[ - (1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) \] ### Step 4: Substitute back into the determinant expression Now substituting back into the expression for \(\Delta\): \[ \Delta = 1 \cdot \left[(1 - \cos x)(1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) + \sin x + \cos x\right] + \cos x \cdot (1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) \] ### Step 5: Combine terms Combining the terms gives: \[ \Delta = (1 - \cos x)(1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) + \sin x + \cos x + \cos x(1 - \sqrt{2} \sin\left(x + \frac{\pi}{4}\right)) \] ### Step 6: Simplify the expression Now, we can simplify this expression further, but we can also observe that certain terms may cancel out or combine nicely. After careful observation and simplification, we find that: \[ \Delta = 1 \] ### Final Answer Thus, the value of the determinant \(\Delta\) is: \[ \Delta = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|(2cosx,1,0),(1,2cosx,1),(0,1,2cosx)| then

If A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,0,1):}] =f(x), then A^(-1) is equal to

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

Slove (2sinx-cosx)(1+cosx)=sin^2x

cosx{(cosx)/(1-sinx)+(1-sinx)/(cosx)}, is

int(sinx-cosx)/(sqrt(sin2x-(1)/(2)))dx=

int_0^(pi/2) cosx/sqrt(1+sinx)dx

Delta(x)=|(tanx,sinx,cosx), (sqrt2,1,1), (2,sqrt3,3)|, then Delta'(x)=0 has

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If bc+ca+ab=18 and |(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3))...

    Text Solution

    |

  2. If x!=0 the determinant Delta=|(a(0),a(1),a(2)),(-x,x,0),(0,-x,x)| ...

    Text Solution

    |

  3. If x epsilon R the determinant Delta=|(1,cosx,0),(-1,1-cosx,sinx+cos...

    Text Solution

    |

  4. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  5. Find the maximum value of |1 1 1 1 1+sintheta1 1 1 1+costheta|

    Text Solution

    |

  6. If |(x +a,b,c),(a,x +b,c),(a,b,x +c)| = 0, then x equals

    Text Solution

    |

  7. The determinant |(sec^(2)theta, tan^(2)theta,1),(tan^(2)theta, sec^(...

    Text Solution

    |

  8. If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0 then

    Text Solution

    |

  9. The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

    Text Solution

    |

  10. If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,...

    Text Solution

    |

  11. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  12. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  13. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  14. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  15. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  16. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  17. if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-...

    Text Solution

    |

  18. If e^(lx)=cosx+isinx and x+iy=|(1,e^(pi i//4),e^(pi i//3)),(e^(-pi i...

    Text Solution

    |

  19. If a,b,c,in R, find the number of real root of the equation |{:(x,c,-b...

    Text Solution

    |

  20. If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}| =3 then the value of |{:(...

    Text Solution

    |