Home
Class 12
MATHS
If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|...

If `Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0` then

A

1/b is a cube root of unit

B

a is one of the cube roots of unity

C

b is one of thecube roots of 8

D

a/b is a cube root of 8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where we have the determinant \( \Delta = \begin{vmatrix} -a & 2b & 0 \\ 0 & -a & 2b \\ 2b & 0 & -a \end{vmatrix} = 0 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} -a & 2b & 0 \\ 0 & -a & 2b \\ 2b & 0 & -a \end{vmatrix} \] ### Step 2: Calculate the Determinant Using the formula for the determinant of a 3x3 matrix, we have: \[ \Delta = -a \begin{vmatrix} -a & 2b \\ 0 & -a \end{vmatrix} - 2b \begin{vmatrix} 0 & 2b \\ 2b & -a \end{vmatrix} + 0 \begin{vmatrix} 0 & -a \\ 2b & 0 \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Now we calculate the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} -a & 2b \\ 0 & -a \end{vmatrix} = (-a)(-a) - (2b)(0) = a^2 \] 2. For the second determinant: \[ \begin{vmatrix} 0 & 2b \\ 2b & -a \end{vmatrix} = (0)(-a) - (2b)(2b) = -4b^2 \] ### Step 4: Substitute Back into the Determinant Now substituting these values back into the determinant calculation: \[ \Delta = -a(a^2) - 2b(-4b^2) + 0 \] \[ \Delta = -a^3 + 8b^3 \] ### Step 5: Set the Determinant to Zero Since we are given that \( \Delta = 0 \): \[ -a^3 + 8b^3 = 0 \] ### Step 6: Rearranging the Equation Rearranging gives us: \[ a^3 = 8b^3 \] ### Step 7: Taking the Cube Root Taking the cube root of both sides, we find: \[ \frac{a}{b} = \sqrt[3]{8} = 2 \] ### Final Result Thus, the relationship between \( a \) and \( b \) is: \[ \frac{a}{b} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

Let a,b>0 and Delta=|(-x,a,b),(b,-x,a),(a,b,-x)| then (1) a+b-x is a factor of Delta 2) x^2+(a+b)x+a^2+b^2-ab is a factor of Delta (3) Delta=0 has three real roots if a=b 4) all of these

Let Delta=|(a,a^(2),0),(1,2a+b,(a+b)^(2)),(0,1,2a+3b)| then

If Delta=det[[0,b-a,c-aa-b,0,c-ba-c,b-c,0]], then Delta

Delta = |(a, a^2, 0),(1, 2a+b,(a+b)),(0, 1, 2a+3b)| is divisible by a+b b. a+2b c. 2a+3b d. a^2

If Delta_1=|(1,0),(a,b)| and Delta_2=|(1,0),(c,d)| , then Delta_2Delta_1 is equal to :

prove that |[a,b,0],[0,a,b],[b,0,a]|=a^3+b^3,hence find the value of |[2ab,a^2,b^2],[a^2,b^2,2ab],[b^2,2ab,a^2]|

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If a, b, c are complex numbers, then the determinant Delta = |(0,-b,-c),(bar(b),0,-a),(bar(c),bar(a),0)| , is

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If |(x +a,b,c),(a,x +b,c),(a,b,x +c)| = 0, then x equals

    Text Solution

    |

  2. The determinant |(sec^(2)theta, tan^(2)theta,1),(tan^(2)theta, sec^(...

    Text Solution

    |

  3. If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0 then

    Text Solution

    |

  4. The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

    Text Solution

    |

  5. If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,...

    Text Solution

    |

  6. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  7. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  8. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  9. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  10. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  11. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  12. if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-...

    Text Solution

    |

  13. If e^(lx)=cosx+isinx and x+iy=|(1,e^(pi i//4),e^(pi i//3)),(e^(-pi i...

    Text Solution

    |

  14. If a,b,c,in R, find the number of real root of the equation |{:(x,c,-b...

    Text Solution

    |

  15. If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}| =3 then the value of |{:(...

    Text Solution

    |

  16. If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos al...

    Text Solution

    |

  17. Suppose a,b,c epsilon R and a,b,c gt 0. Let Delta=|(loga, logb, logc...

    Text Solution

    |

  18. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  19. Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,...

    Text Solution

    |

  20. If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 then value of the determinant ...

    Text Solution

    |