Home
Class 12
MATHS
The determinant Delta=|(1,1+i,i),(1+i,i...

The determinant
`Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)|` equals

A

`7+4i`

B

`-7+4i`

C

`-7-4i`

D

`2(i-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} 1 & 1+i & i \\ 1+i & i & 1 \\ i & 1 & 1+i \end{vmatrix} \] we will follow a systematic approach. ### Step 1: Write the determinant We start by writing the determinant in a clearer format: \[ \Delta = \begin{vmatrix} 1 & 1+i & i \\ 1+i & i & 1 \\ i & 1 & 1+i \end{vmatrix} \] ### Step 2: Apply column operations We can simplify the determinant by adding all columns together. We will replace the first column with the sum of all three columns. \[ C_1 \rightarrow C_1 + C_2 + C_3 \] Calculating the new first column: - First row: \(1 + (1+i) + i = 1 + 1 + i + i = 2 + 2i\) - Second row: \((1+i) + i + 1 = 1 + i + i + 1 = 2 + 2i\) - Third row: \(i + 1 + (1+i) = i + 1 + 1 + i = 2 + 2i\) Now the determinant becomes: \[ \Delta = \begin{vmatrix} 2 + 2i & 1+i & i \\ 2 + 2i & i & 1 \\ 2 + 2i & 1 & 1+i \end{vmatrix} \] ### Step 3: Factor out common terms We can factor out \(2 + 2i\) from the first column: \[ \Delta = (2 + 2i) \begin{vmatrix} 1 & 1+i & i \\ 1 & i & 1 \\ 1 & 1 & 1+i \end{vmatrix} \] ### Step 4: Perform row operations Next, we can simplify the determinant further by performing row operations. We will replace the second and third rows by subtracting the first row from them: \[ R_2 \rightarrow R_2 - R_1 \quad \text{and} \quad R_3 \rightarrow R_3 - R_1 \] Calculating the new rows: - Second row: \((1 - 1, i - (1+i), 1 - i) = (0, -1, 1-i)\) - Third row: \((1 - 1, 1 - (1+i), (1+i) - i) = (0, -i, 1)\) Now the determinant becomes: \[ \Delta = (2 + 2i) \begin{vmatrix} 1 & 1+i & i \\ 0 & -1 & 1-i \\ 0 & -i & 1 \end{vmatrix} \] ### Step 5: Calculate the determinant of the 2x2 matrix The determinant can now be calculated using the first column: \[ \Delta = (2 + 2i) \cdot 1 \cdot \begin{vmatrix} -1 & 1-i \\ -i & 1 \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} -1 & 1-i \\ -i & 1 \end{vmatrix} = (-1)(1) - (-i)(1-i) = -1 + i(1-i) = -1 + i - i^2 = -1 + i + 1 = i \] ### Step 6: Substitute back into the determinant Now substituting back, we have: \[ \Delta = (2 + 2i)(i) = 2i + 2i^2 = 2i - 2 = -2 + 2i \] ### Final Result Thus, the value of the determinant \(\Delta\) is: \[ \Delta = -2 + 2i \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

1+i,1-i,i1-i,i,1+ii,1+i,1-i]|=

Delta = |{:(a,4-i,1-i),(4+i,b,3+i),(1-i,3-i,c):}| is always

(1 + i)⁴ * (1 + 1⁄ i)⁴ is equal to?

(1+2i)/(1+3i) is equal to

((1+i)/(1-i))^(2) is equal to

Delta=|{:(" "p,2-i,i+1),(2+i," "q,3+i),(1-i,3-i," "r):}| is always

MCGROW HILL PUBLICATION-DETERMINANTS-EXERCISE (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. The determinant |(sec^(2)theta, tan^(2)theta,1),(tan^(2)theta, sec^(...

    Text Solution

    |

  2. If Delta=|(-a,2b,0),(0,-a,2b),(2b,0,-a)|=0 then

    Text Solution

    |

  3. The determinant Delta=|(1,1+i,i),(1+i,i,1),(i,1,1+i)| equals

    Text Solution

    |

  4. If a,b,c are non zero real numbers then Delta=|(1,ab,1/a+1/b),(1,bc,...

    Text Solution

    |

  5. If a,b,c gt1 then Delta=|(log(a)(abc),log(a)b,log(a)c),(logb(abc),1,lo...

    Text Solution

    |

  6. Prove that /\ |[a+bx, c+dx, p+qx],[-ax+b, cx+d, px+q],[u,v,w]|=(1-x^2...

    Text Solution

    |

  7. Let Delta=|(1,sin theta, 1),(-sin theta, 1, sin theta),(-1,-sin theta,...

    Text Solution

    |

  8. The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-...

    Text Solution

    |

  9. If |{:(6i,-3i,1),(4,3i,1),(20,3,i):}|=x+iy,i=sqrt(-1) then

    Text Solution

    |

  10. The number of distinct real roots of |s in x cos x cos x cos x s in x ...

    Text Solution

    |

  11. if omega!=1 is a complex cube root of unity, and x+iy=|[1,i,-omega],[-...

    Text Solution

    |

  12. If e^(lx)=cosx+isinx and x+iy=|(1,e^(pi i//4),e^(pi i//3)),(e^(-pi i...

    Text Solution

    |

  13. If a,b,c,in R, find the number of real root of the equation |{:(x,c,-b...

    Text Solution

    |

  14. If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}| =3 then the value of |{:(...

    Text Solution

    |

  15. If Delta=|(sin alpha, cos alpha, sin alpha+cos beta),(sin beta, cos al...

    Text Solution

    |

  16. Suppose a,b,c epsilon R and a,b,c gt 0. Let Delta=|(loga, logb, logc...

    Text Solution

    |

  17. The value of theta , lying between theta =0 and theta=(pi)/(2) and ...

    Text Solution

    |

  18. Solve |{:(x^(2)-1,,x^(2)+2x+1,,2x^(2)+3x+1),(2x^(2)+x-1,,2x^(2)+5x-3,,...

    Text Solution

    |

  19. If a(r)="cos"(2rpi)/9+i "sin"(2rpi)/9 then value of the determinant ...

    Text Solution

    |

  20. If a!=p,b!=q,c!=r and the system of equations px+by+cz=0 ax+qy+cz=...

    Text Solution

    |